

SYS TEC electronic AG - System House for Distributed Automation

USB-CANmodul

System Manual
Version 2.09

Edition July 2024

Document No.: L-487e

SYS TEC electronic AG Am Windrad 2 D-08468 Heinsdorfergrund
Phone: +49 (3765) 38600-0 Fax: +49 (3765) 38600-4100

Web: http://www.systec-electronic.com Mail: sales@systec-electronic.com

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 2

Document History

Date/Version
Section/
Table/
Figure

Changes
Author/
Editor

13th June 2016
V2.00 All

Continued from L-487e_30 (as V1.30).
New style sheet for manuals.
Obsolete hardware versions removed.

Dietzsch

09th August 2016
V2.01

2.1.3
2.1.4

Sections added for Multiport devices USB-CANmodul8
and USB-CANmodul16

Dietzsch

2.2 Voltage limitations added for the CAN connector. Dietzsch

2.3 Termination resistors of Multiport devices are changeable
via switches at the front panel.

Dietzsch

4.3.8 Section added explaining the CAN-channel assignment of
Multiport devices.

Dietzsch

Table 1 List of available hardware variants updated Dietzsch

02nd February 2017
V2.01

2.3 Add note for CAN cable to be used in case of highly
electromagnetic disturbed applications.

Dietzsch

4.3.7.1 Add note for handling USB reconnections of logical
devices in an application.

Dietzsch

17th Mai 2017
V2.02

3.1 Update of supported Windows versions. Dietzsch

3.2 Add some notes for Windows 10. Dietzsch

Table 14
Add constants for usbcanl23.sys and usbcanlex.sys.

Add availability of the constants according to the installed
driver version.

Dietzsch

Table 11 Add new folders available since driver version V6.00. Dietzsch

Figure 14 Add figure showing the front and back view of the
USB-CANmodul16

Dietzsch

Figure 2 and
Figure 7

Update of figures of product stickers of the
USB-CANmodul1 and USB-CANmodul2

Dietzsch

Figure 12 and
Table 2

Add information for USB-CANmodul2 with order code
3204010: power supply input.

Dietzsch

2.1.1 to 2.1.4,
2.2 to 2.6 and
3, 3.1 to 3.10

Changed the depth of the section numbers.
Dietzsch

29th September
2017 V2.03

2.1 Add note for EMC. Dietzsch +
Künzel

29th August 2018
V2.04

3.1 Update of Windows 10 Version 1803 Build 17134 Dietzsch

17th July 2019
V2.05

2.1.1 Removed the technical property of the 120 ohm
termination register.

Dietzsch

26th September
2019 V2.05

3.1 Update of Windows 10 Version 1903 Build 18362 Dietzsch

All
Changed “SYS TEC electronic GmbH” to “SYS TEC
electronic AG”

Dietzsch

2.1.5 Added support of legacy devices since driver version
V6.05

Dietzsch

07th October 2021
V2.06

All Removed all hints to PCANView (USBCAN) tool Dietzsch

3.2 Updated screenshots of installation under Windows OS Dietzsch

3.7 Rework of section for CANinterpreter Lite for
USB-CANmodul

Dietzsch

4.1 Updated file structure in Table 11 Dietzsch

4.2.2 Rework of section for CANinterpreter Lite for
USB-CANmodul

Dietzsch

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 3

Date/Version
Section/
Table/
Figure

Changes
Author/
Editor

11th October
2021 V2.06

5 Add information for installation and starting of
CANinterpreter Lite for Linux in section 5

Glau

12th May 2022
V2.07

4.2.1 Add configuration of the Auto Reconnect feature. Dietzsch

Figure 25,
Figure 26

Update of screenshots of USB-CANmodul Control
Dietzsch

17th October 2023
V2.08

3.4.1 Added section 3.4.1 ”Troubleshooting for device
installation”

Dietzsch

14th May 2024
V2.08

2.1.1,
Table 1

Add USB-CANmodul1 Revision 02 to Table 1 and add
description to sub-section 2.1.1.2. Dietzsch

3.1 Removed support of Windows 7, 8 and 8.1 Dietzsch

2.1.4 Added info about the built-in fuse for USB-CANmodul16 Dietzsch

29th May 2024
V2.08

4.3.4.4 Added Baud Rate configuration for USB-CANmodul1 C
Revision 01

Dietzsch

17th July 2024
V2.09

Table 1
several

Part number and name of USB-CANmodul1 C changed
Generation of USB-CANmodul1 C increased to 5

Jung-
andreas

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 4

Product names used in this manual which are also registered trademarks have not been marked extra.
The missing © mark does not imply that the trade name is unregistered. Nor is it possible to determine
the existence of any patents or protection of inventions on the basis of the names used.

The information in this manual has been carefully checked and is believed to be accurate. However, it
is expressly stated that SYS TEC electronic AG does not assume warranty or legal responsibility or
any liability for consequential damages which result from the use or contents of this user manual. The
information contained in this manual can be changed without prior notice. Therefore, SYS TEC
electronic AG shall not accept any obligation.

Furthermore, it is expressly stated that SYS TEC electronic AG does not assume warranty or legal
responsibility or any liability for consequential damages which result from incorrect use of the hard or
software. The layout or design of the hardware can also be changed without prior notice. Therefore,
SYS TEC electronic AG shall not accept any obligation.

© Copyright 2024 SYS TEC electronic AG, D-08468 Heinsdorfergrund

All rights reserved. No part of this manual may be reproduced, processed, copied or distributed in any
way without the express prior written permission of SYS TEC electronic AG.

Contact Direct Your Local Distributor

Address: SYS TEC electronic AG
Am Windrad 2
D-08468 Heinsdorfergrund
GERMANY

Please find a list of our distributors
under:

https://www.systec-
electronic.com/en/company/partners-
amp-distributors

Ordering
Information:

+49 (0) 37 65 / 38 600-2110
sales@systec-electronic.com

Technical Support: +49 (0) 37 65 / 38 600-0
support@systec-electronic.com

Fax: +49 (0) 37 65 / 38 600 4100

Web Site: https://www.systec-electronic.com/

https://www.systec-electronic.com/en/company/partners-amp-distributors
https://www.systec-electronic.com/en/company/partners-amp-distributors
https://www.systec-electronic.com/en/company/partners-amp-distributors
mailto:sales@systec-electronic.com
mailto:support@systec-electronic.com
https://www.systec-electronic.com/

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 5

Table of Contents

1 Introduction .. 10

2 Hardware Description .. 11
 Hardware Variants ... 11

2.1.1 The USB-CANmodul1 ... 13
2.1.1.1 USB-CANmodul1 Revision 01 .. 13
2.1.1.2 USB-CANmodul1 C .. 15

2.1.2 The USB-CANmodul2 ... 16
2.1.3 The USB-CANmodul8 ... 19
2.1.4 The USB-CANmodul16 ... 22
2.1.5 Legacy devices ... 24
 CAN connector ... 25
 Termination resistor for high-speed CAN Transceiver ... 25
 CAN-port with low-speed CAN Transceiver ... 27
 Expansion Port ... 28
 LEDs on the USB-CANmodul .. 30

3 Getting Started ... 32
 System requirements ... 32
 Installation of the driver under Windows-OS.. 33
 Updating an existing installation .. 39
 Verifying the Device Installation ... 41

3.4.1 Troubleshooting for device installation ... 42
 Device Number Allocation .. 43
 Connection to a CAN Network ... 44
 Starting CANinterpreter Lite for USB-CANmodul .. 44
 Creating a debug file from DLL .. 49
 Activation of the network driver .. 50

 Completely uninstall the driver ... 50

4 Software Support for Windows OS .. 52
 File Structure .. 52
 Tools for the USB-CANmodul .. 53

4.2.1 USB-CANmodul Control for Windows .. 53
4.2.2 CANinterpreter Lite for Windows .. 54
 Description of the USBCAN32.DLL / USBCAN64.DLL .. 56

4.3.1 The concept of the DLL... 56
4.3.2 API Functions of the DLL .. 59

4.3.2.1 General API functions ... 59
4.3.2.2 API Functions for automatic transmission .. 100
4.3.2.3 API Functions for the CAN port .. 103
4.3.2.4 API Functions for the expansion port ... 107

4.3.3 Error codes of the API functions ... 109
4.3.4 Baud Rate Configuration .. 114

4.3.4.1 Baud Rate Configuration for first and second generation USB-CANmodul 114
4.3.4.2 Baud Rate Configuration for third generation USB-CANmodul 116
4.3.4.3 Baud Rate Configuration for fourth generation USB-CANmodul Revision 01 121
4.3.4.4 Baud Rate Configuration for fifth generation USB-CANmodul1 C Revision 01 124
4.3.4.5 Use of user-defined CAN baud rates ... 126

4.3.5 CAN Messages Filter Function ... 127
4.3.6 Using multiple CAN-channels ... 130
4.3.7 Using the Callback Functions ... 131

4.3.7.1 Connect Control Callback Function .. 131
4.3.7.2 Event Callback Function ... 133
4.3.7.3 Enumeration Callback Function.. 136

4.3.8 Assignment of CAN-channels of Multiport devices ... 139

5 Software support for Linux OS ... 141
 Installation of SocketCAN driver for USB-CANmodul series ... 141
 Installation of CANinterpreter Lite .. 143

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 6

 Configure the SocketCAN interface for USB-CANmodul ... 144
 Start of CANinterpreter Lite .. 146

5.4.1 Configure and Connect the CAN interface ... 147
 CANinterpreter User Manual .. 148
 CANinterpreter Full Version ... 148

6 Known issues ... 149

Index ... 150

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 7

List of Tables

Table 1: Overview of hardware variants .. 11
Table 2: Pinout of the power input connector of order code 3204010-XX .. 21
Table 3: Overview of supported legacy devices .. 24
Table 4: Pinout of the CAN DB-9 Plug .. 25
Table 5: Recommended cable parameters ... 26
Table 6: Signals available for low-speed or single-wire CAN port .. 27
Table 7: Control input for single-wire CAN port ... 27
Table 8: Expansion Port Pin Assignment on USB-CANmodul2 .. 28
Table 9: Properties of port expansion on USB-CANmodul2 ... 28
Table 10: States of the LEDs on the USB-CANmodul devices ... 31
Table 11: Software file structure .. 52
Table 12: Available API functions according the software state .. 58
Table 13: Constants for the debug level passed to function UcanSetDebugMode()....................... 60
Table 14: Constants for the type of version information for function UcanGetVersionEx() 62
Table 15: Constants for selecting the CAN mode ... 73
Table 16: Constants for Reset Flags ... 75
Table 17: Constants as pre-defined combinations for Reset Flags ... 76
Table 18: Constants for Product-Code / Hardware-Type .. 81
Table 19: Constants for CAN error status .. 88
Table 20: Constants for general error status ... 88
Table 21: Constants for the CAN frame format ... 93
Table 22: Constants for the flags parameter in function UcanGetMsgPending() 98
Table 23: Constants for the flags parameter in function UcanEnableCyclicCanMsg().................. 103
Table 24: Constants for low-speed CAN port .. 104
Table 25: Error codes of the API functions .. 109
Table 26: Constants for CAN baud rates for first and second generation 114
Table 27: Constants for CAN baud rates for third generation ... 117
Table 28: Constants for CAN baud rates for fourth generation Rev.01 (CPU freq. = 96 MHz) 121
Table 29: Constants for CAN baud rates for fourth generation Rev.01 (CPU freq. = 120 MHz) ... 121
Table 30: Constants for CAN baud rates for fifth generationof USB-CANmodul1 C Rev.01 124
Table 31: Examples for user-defined CAN baud rates .. 126
Table 32: CAN message filter mechanism for only accepted CAN messages 127
Table 33: Constants for acceptance filter for receiving all CAN messages 129
Table 34: Constants for CAN-channel selection .. 130
Table 35: Constants for the event informed with the connect control callback functions 131
Table 36: Constants for the event informed with the event callback functions 133
Table 37: Assignment of CAN-channels of Multiport devices .. 139

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 8

List of Figures

Figure 1: Top view of the USB-CANmodul1 ... 13
Figure 2: Product sticker of the USB-CANmodul1 Revision 01 .. 14
Figure 3: Mini-USB Type B connector of the USB-CANmodul1 Revision 01 14
Figure 4: Product sticker of the USB-CANmodul1 C .. 15
Figure 5: USB Type C connector of the USB-CANmodul1 C ... 15
Figure 6: Top view of the USB-CANmodul2 ... 16
Figure 7: Product sticker of the USB-CANmodul2 .. 17
Figure 8: Position of expansion plug and jumpers on USB-CANmodul2 .. 18
Figure 9: Internal structure of the USB-CANmodul8 ... 19
Figure 10: Front and back view of the USB-CANmodul8 in table case .. 19
Figure 11: Product sticker of the USB-CANmodul8 .. 20
Figure 12: Power input of order code 3204010-XX... 20
Figure 13: Internal structure of the USB-CANmodul16 ... 22
Figure 14: Front and back view of the USB-CANmodul16 ... 22
Figure 15: Product sticker of the USB-CANmodul16 .. 23
Figure 16: Termination resistors on CAN bus ... 25
Figure 17: Simple example circuit for Expansion Port .. 29
Figure 18: Traffic LED after one CAN message on CAN bus ... 30
Figure 19: Traffic LED after more CAN messages on CAN bus ... 30
Figure 20: Blink cycles of the state LED ... 30
Figure 21: USB-CANmodul Control Check for Update ... 39
Figure 22: USB-CANmodul Control Start Download .. 40
Figure 23: Updating an existing installation .. 40
Figure 24: Device Manager with the USB-CANmodul .. 41
Figure 25: USB-CANmodul Control tab-sheet Hardware ... 43
Figure 26: Device number changing dialog box.. 43
Figure 27: Dialog box for CAN interface Overview in CANinterpreter Lite 46
Figure 28: CANinterpreter Lite main window (connected) .. 47
Figure 29: Entering a new transmit message ... 48
Figure 30: Debug settings in USB-CANmodul Control ... 49
Figure 31: Activation of higher performance ... 53
Figure 32: Dialog box for manipulating the port expansion and the CAN port 53
Figure 33: Configuration of Auto Reconnect feature .. 54
Figure 34: Software State Diagram ... 56
Figure 35: Example for parallel mode of cyclic CAN messages ... 100
Figure 36: Example for Sequential mode of cyclic CAN messages.. 100
Figure 37: Structure of baud rate register BTR0 ... 115
Figure 38: Structure of baud rate register BTR1 ... 115
Figure 39: General structure of one bit on the CAN-bus (source: NXP SJA1000 manual) 116
Figure 40: Structure of baud rate register dwBaudrate of third generation modules 117
Figure 41: General structure of one bit on the CAN-bus (source: Atmel AT91SAM7A3 manual) .. 118
Figure 42: Structure of baud rate register dwBaudrate for fourth generation modules Rev.01 122
Figure 43: General structure of one bit on the CAN-bus (source: STM32F205xx manual) 122
Figure 44: Structure of baud rate register dwBaudrate for USB-CANmodul1 C Rev.01 124
Figure 45: CAN message filter mechanism used within the USB-CANmodul 127
Figure 46: CAN message filter corresponding bits for 11-bit CAN-ID... 127
Figure 47: CAN message filter corresponding bits for 29-bit CAN-ID... 128
Figure 48: Unzip “TAR” archive of SocketCAN driver ... 141
Figure 49: Unziped folder of SYS TEC SocketCAN driver ... 142
Figure 50: Syntax of “unzip” command for CANinterpreter Lite archive ... 143
Figure 51: Destination folder of unzipped CANinterpreter .. 143
Figure 52: Command “ip link” to show the SocketCAN interfaces .. 144
Figure 53: Command to configure can0 interface type and bitrate ... 144
Figure 54: Command to configure can0 TX queue length .. 145
Figure 55: Command to set the can0 interface into “online mode” ... 145
Figure 56: Main window of the CANinterpreter Lite .. 146
Figure 57: CAN Interface Overview dialog .. 147

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 9

Figure 58: Added SocketCAN interface .. 147
Figure 59: CANinterpreter Lite connected to SocketCAN interface .. 148

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 10

1 Introduction

Unveiled in 1995, the Universal Serial Bus (USB) connectivity standard provides a simple and
convenient way to connect various peripheral devices to a host-PC. It will replace a wide variety of serial
and parallel connections. The USB standard allows up to 127 devices to be connected to the PC without
using multiple connector types, without interrupt conflicts (IRQs), hardware address adjustments
(jumpers) or channel changes (DMA). USB provides powerful true hot plug-and-play capability; i.e.,
dynamic attach and recognition for new devices. It allows the user to work with those devices
immediately without restarting the operating system.

The USB-CANmodul takes advantage of this communication standard and provides an easy to use
portal from a host-PC to a CAN network. Connecting the USB-CANmodul to the host-PC is simple. The
included USB cable supports the two types of USB connectors, type A and type B. The type A plug
connects to the host computer or an upstream hub. Type B plug connects downstream to the
USB-CANmodul. The USB interface enables data transfer with a rate of up to 12 MBit/s. With a uniform
connector for all device types, the system is absolutely user friendly.

Once the USB-CANmodul is connected to the host-PC, the operating system reads the configuration
data and automatically loads the device driver. All CAN messages are transferred transparently through
the USB Bus. CAN Baud Rates of up to 1 mbps are supported. The transmitted and received CAN
messages are buffered by the USB-CANmodul. The device supports CAN messages according to CAN
2.0A and 2.0B specifications (11- and 29-Bit identifiers). Connection to the CAN bus meets the CiA
Standard DS 102 (DB-9) and features optional optical isolation of the CAN signals.

Drivers for LabView (contributed) , Windows 10, and 11 as well as Linux are provided for the
USB-CANmodul. The USB configuration tool for Windows enables connectivity and management of
more than one device on the USB bus. This USB network is configured using device numbers which
are assigned by the user and are stored in an EEPROM. The functions for data exchange with the USB-
CAN application are available through a DLL (Dynamic Linked Library) . The enclosed demo program
shows the easy handling of the DLL API functions.

For more information, optional products, updates et cetera, we recommend you to visit our website:
http://www.systec-electronic.com. The content of this website is updated periodically and provides to
you downloads of the latest software releases and manual versions.

The document describes all hardware variants of the USB-CANmodul, the installation of the device
drivers and the API interface. There are no additional manuals needed for the USB-CANmodul.

http://www.systec-electronic.com/

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 11

2 Hardware Description

 Hardware Variants

Table 1 lists the available hardware variants this manual is related to. All these hardware variants belong
to the fourth hardware generation (G4). Older hardware variants are not documented within the scope
of this manual - they are described in older manual versions of L-487.

Since driver version V6.05 the legacy USB-CANmodul devices are supported too. Refer to section 2.1.5.

Table 1: Overview of hardware variants

Oder code / name CH0 CH1
IO

port
Housing

Galv.
isolation

Power
supply

Max.
current

over
USB

3204001-01
USB-CANmodul1

82C251 - No.
Small

table case
Yes

USB
powered

150mA

3304004-01
USB-CANmodul1

82C251 - No.
Open
frame

Yes
USB

powered
150mA

3204030-01
USB-CANmodul1 C

MCP2562FD - No.
Small

table case
Yes

USB
powered

150mA

3304030-01
USB-CANmodul1 C

MCP2562FD - No.
Open
frame

Yes
USB

powered
150mA

3204003-01
USB-CANmodul2

82C251 82C251 No1 Table case Yes
USB

powered
200mA

3204007-01
USB-CANmodul2

82C251 82C251 Yes Table case Yes
USB

powered
200mA

3204008-01
USB-CANmodul2

AU5790 82C251 No1 Table case Yes
USB

powered
200mA

3204019-01
USB-CANmodul2

TJA1054 82C251 No1 Table case Yes
USB

powered
200mA

3204004-01
USB-CANmodul8

82C251 82C251 No1 Table case Yes
External

100 -
240 VAC

0mA

3204010-01
USB-CANmodul8

82C251
82C251

up to CH7
No1 Table case Yes

External
9 - 32 VDC

0mA

3304000-01
USB-CANmodul8

82C251
82C251

up to CH7
No1

Open
frame

Yes
External

100 -
240 VAC

0mA

3404002-01
USB-CANmodul8

82C251
82C251

up to CH7
No1

19’’ rack-
mounted

Yes
External

100 -
240 VAC

0mA

3404001-01
USB-CANmodul16

82C251
82C251

up to CH15
No1

19’’ rack-
mounted

Yes
External

100 -
240 VAC

0mA

1 The IO port is available at the PCB but the connector is not available on the case.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 12

Note for EMC:

In case of highly electromagnetic disturbed applications we advise to use a proper mounting location.
Please separate the power and control wires/components to suite the general rules of electrical
installation design.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 13

2.1.1 The USB-CANmodul1

2.1.1.1 USB-CANmodul1 Revision 01

The USB-CANmodul1 is a cost optimized variant of the sysWORXX USB-CANmodul series including
only one CAN-channel. This device has a galvanic isolation and built in a high-speed CAN transceiver.
There is no Expansion Port for connecting digital inputs or outputs.

Figure 1: Top view of the USB-CANmodul1

The modules since revision -01 belongs to the fourth generation. All older revisions are obsolete and
are not documented within the scope of this manual. To find out the revision number of the
USB-CANmodul1 have a look at the sticker at the ground of the case. The number behind the hyphen
specifies the revision number of the USB-CANmodul (refer to Figure 2). At older stickers the revision is
marked with the prefix “Rev.” at which revision 05 belongs to the fourth generation.

Technical Data:

- More compact case with dimensions of 78x45x18 (LxWxH in mm), weight approx. 40g
or available as Open Frame

- Single CAN interface (ISO 11858-1/2, Standard Frames, Extended Frames, Remote Frames),
SUB-D9 connector

- Fast 32-bit MCU, enhanced firmware

- USB bus powered, current consumption max. 150mA

- USB 1.1 Full-Speed (12Mbit/s), compatible to USB 2.0 and USB 3.0, Mini-USB Type B
connector

- High-speed CAN transceiver 82C251 (according ISO 11898-2)

- CAN bitrate 10kbps to 1Mbps

- Galvanic isolation

- Operating temperature: -40ºC to +85ºC

Refer to section 2.2 for information about the pinout of the CAN connectors.

Refer to section 2.3 for information about the termination resistors for high-speed CAN transceivers.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 14

(old sticker)

(new sticker)

Figure 2: Product sticker of the USB-CANmodul1 Revision 01

Figure 3: Mini-USB Type B connector of the USB-CANmodul1 Revision 01

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 15

2.1.1.2 USB-CANmodul1 C

The USB-CANmodul1 C is the fifth generation of the USB-CANmodul1. It is equipped with a USB type
C socket and has a high-speed CAN transceiver installed. The software supports Classic CAN
messages with up to 1 Mbps.

Technical Data:

- More compact case with dimensions of 78x45x18 (LxWxH in mm), weight approx. 40g
or available as Open Frame

- Single CAN interface (Classic-CAN, ISO 11858-1/2, Standard Frames, Extended Frames,
Remote Frames), SUB-D9 connector

- Fast 32-bit MCU, enhanced firmware

- USB bus powered, current consumption max. 150mA

- USB 1.1 Full-Speed (12Mbit/s), compatible to USB 2.0 and USB 3.0, USB Type C connector

- High-speed CAN transceiver MCP2562FD (according ISO-11898-2 and ISO-11898-5)

- CAN bitrate 10kbps to 1Mbps

- Galvanic isolation

- Operating temperature: -40ºC to +85ºC

Refer to section 2.2 for information about the pinout of the CAN connectors.

Refer to section 2.3 for information about the termination resistors for high-speed CAN transceivers.

Figure 4: Product sticker of the USB-CANmodul1 C

Figure 5: USB Type C connector of the USB-CANmodul1 C

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 16

2.1.2 The USB-CANmodul2

The USB-CANmodul2 is an extended variant of the sysWORXX USB-CANmodul series including two
CAN-channels. This device has a galvanic isolation and built in two high-speed CAN transceiver
82C251. There are variants with built in alternatively CAN transceivers at the 1st CAN channel (e.g.
TJA1054 or AU5790). But the 2nd CAN channel always has built in the high-speed CAN transceiver
82C251 (refer to Table 1 for detailed information).

There is Expansion Port for connecting digital inputs or outputs. With order number 3204007 you will
get an USB-CANmodul2 including an Expansion Port which is described in section 2.5.

Figure 6: Top view of the USB-CANmodul2

The modules since revision -01 belongs to the fourth generation. All older revisions are obsolete and
are not documented within the scope of this manual. To find out the revision number of the
USB-CANmodul2 have a look at the sticker at the ground of the case. The number behind the hyphen
shows the revision number (refer to Figure 7). At older stickers the revision is marked with the prefix
“Rev.” at which revision 03 belongs to the fourth generation.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 17

(old sticker)

(new sticker)

Figure 7: Product sticker of the USB-CANmodul2

Technical Data:

- Case dimensions of 100x78x30 (LxWxH in mm), weight approx. 110g

- Two CAN-channels, independently utilizable (ISO 11858-1/2, Standard Frames, Extended
Frames, Remote Frames), SUB-D9 connectors

- Fast 32-bit MCU, enhanced firmware

- USB bus powered, current consumption max. 200mA

- USB 1.1 Full-Speed (12Mbit/s), compatible to USB 2.0 and USB 3.0, USB Type B connector

- High-speed CAN transceiver 82C251 for 2nd CAN channel (according ISO 11898-2)

- Alternative CAN transceivers for 1st CAN channel choose-able via order code (e.g. TJA1054 or
AU5790 - low-speed or single-wire CAN according ISO 11898-3)

- CAN bitrate 10kbps to 1Mbps for high-speed CAN transceiver

- CAN bitrate 10kbps to 125bps for low-speed CAN transceiver TJA1054

- CAN bitrate 33,3kbps or 83,3kbps for single-wire CAN transceiver AU5790

- Galvanic isolation

- 120 ohm termination resistor can be set at PCB via jumper

- Micro controller’s 8-bit user port (I/O with TTL level) provides for customer-specific extensions
with order code 3204007

- Operating temperature: -40ºC to +85ºC

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 18

Refer to section 2.2 for information about the pinout of the CAN connectors.

Refer to section 2.3 for information about the termination resistors for high-speed CAN transceivers.

Refer to section 2.4 for information about the CAN port for low-speed CAN transceivers.

Refer to section 2.5 for information about the expansion port.

CAN1

CAN0
USB

SD Card

Trigger

ext. power
+5 VDC X400

JP200

JP300

J
P

1
0
4

J
P

1
0
5

Figure 8: Position of expansion plug and jumpers on USB-CANmodul2

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 19

2.1.3 The USB-CANmodul8

The USB-CANmodul8 is a Multiport device with up to 8 CAN channels.

This device is structured into 4 logical USBCAN devices with 2 CAN-channels each (four so-called
“logical devices”). All 4 logical devices are combined by an USB-hub (see picture below).

Power Supply

USB
Hub

logical
device 1

logical
device 2

logical
device 3

logical
device 4

USB
port

logical device 1

CH1

CH0

logical device 4

CH7

CH6

Figure 9: Internal structure of the USB-CANmodul8

Each CAN channel has a galvanic isolation and a built-in high-speed CAN transceiver 82C251.

Figure 10: Front and back view of the USB-CANmodul8 in table case

The modules since revision -01 belongs to the fourth generation. All older revisions are obsolete and
are not documented within the scope of this manual. To find out the revision number of the
USB-CANmodul8 have a look at the sticker at the background of the case. The number behind the order
code shows the revision number (refer to Figure 11).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 20

Figure 11: Product sticker of the USB-CANmodul8

Technical Data:

- Table-case dimensions of 200x225x75 (LxWxH in mm), weight approx. 1200g

- Eight CAN-channels, independently utilizable (ISO 11858-1/2, Standard Frames, Extended
Frames, Remote Frames), SUB-D9 connectors

- Fast 32-bit MCU, enhanced firmware

- 3204004-01: USB self-powered 100 – 240 VAC 50/60 Hz, max. 25W, Fine-wire fuse 500mA

- 3204010-01: USB self-powered 9 – 32 VDC

- USB 1.1 Full-Speed (12Mbit/s), compatible to USB 2.0 and USB 3.0, USB Type B connector

- High-speed CAN transceiver 82C251 (according ISO 11898-2)

- CAN bitrate 10kbps to 1Mbps for high-speed CAN transceiver

- Galvanic isolation

- 120 ohm termination resistor can be set via switch at the front panel of the case

- Operating temperature: 0ºC to +55ºC

Refer to section 2.2 for information about the pinout of the CAN connectors.

Refer to section 2.3 for information about the termination resistors for high-speed CAN transceivers.

Refer to section 2.5 for information about the expansion port.

The order code 3204010 since hardware revision -01 does not have a port for as rubber connector.
Instead of this it has a green screw terminal with three pins. Refer to Figure 12 and Table 2 for detailed
information.

Figure 12: Power input of order code 3204010-XX

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 21

Table 2: Pinout of the power input connector of order code 3204010-XX

Pin description

1 Vcc +9…32VDC (max. 24W)

2 GND

3 Earth grounding

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 22

2.1.4 The USB-CANmodul16

The USB-CANmodul16 is a Multiport device with up to 16 CAN channels.

This device is structured into 8 logical USBCAN devices with 2 CAN-channels each (eight so-called
“logical devices”). All 8 logical devices are combined by two USB-hubs (see picture below).

Power Supply

USB
Hub

logical
device 1

logical
device 2

logical
device 3

logical
device 4

USB
port

logical device 1

CH1

CH0

logical device 8

CH15

CH14

USB
Hub

logical
device 5

logical
device 6

logical
device 7

logical
device 8

USB
port

Figure 13: Internal structure of the USB-CANmodul16

Each CAN channel has a galvanic isolation and a built-in high-speed CAN transceiver 82C251.

Figure 14: Front and back view of the USB-CANmodul16

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 23

The modules since revision -01 belongs to the fourth generation. All older revisions are obsolete and
are not documented within the scope of this manual. To find out the revision number of the
USB-CANmodul16 have a look at the sticker at the background of the case. The number behind the
order code shows the revision number (refer to Figure 15).

Figure 15: Product sticker of the USB-CANmodul16

Technical Data:

- Dimensions of 19’’ rack-mounted case of 250x485x45 (LxWxH in mm), weight approx. 2000g

- Sixteen CAN-channels, independently utilizable (ISO 11858-1/2, Standard Frames, Extended
Frames, Remote Frames), SUB-D9 connectors

- Fast 32-bit MCU, enhanced firmware

- 3404001-01: USB self-powered 100 – 240 VAC, current consumption max. 500mA, Fine-wire
fuse 500mA

- 2 x USB 1.1 Full-Speed (12Mbit/s), compatible to USB 2.0 and USB 3.0, USB Type B connector

- High-speed CAN transceiver 82C251 (according ISO 11898-2)

- CAN bitrate 10kbps to 1Mbps for high-speed CAN transceiver

- Galvanic isolation

- 120 ohm termination resistor can be set via switch at the front panel of the case

- Operating temperature: 0ºC to +55ºC

Refer to section 2.2 for information about the pinout of the CAN connectors.

Refer to section 2.3 for information about the termination resistors for high-speed CAN transceivers.

Refer to section 2.5 for information about the expansion port.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 24

2.1.5 Legacy devices

Since driver version V6.05 the legacy USB-CANmodul devices are supported too. Table 3 gibes a short
overview of these legacy devices.

Any hardware properties are equal to the actual devices of the 4th generation. For more information refer
to an older version of this manual or contact support@systec-electronic.com.

Table 3: Overview of supported legacy devices

Oder code / name CH0 CH1
IO

port
Housing

Galv.
isolation

Power
supply

Max.
current

over USB

3204000 Rev.01 to
Rev.04
USB-CANmodul1

82C251 - No.
Small

table case
No

USB
powered

110mA

3204001 Rev.01 to
Rev.04
USB-CANmodul1

82C251 - No.
Small

table case
Yes

USB
powered

110mA

3204002 Rev. 01 to
Rev. 02
USB-CANmodul2

82C251 82C251 No1 Table case No
USB

powered
200mA

3204003 Rev. 01 to
Rev. 02
USB-CANmodul2

82C251 82C251 No1 Table case Yes
USB

powered
200mA

3204007 Rev. 01 to
Rev. 02
USB-CANmodul2

82C251 82C251 Yes Table case Yes
USB

powered
200mA

3204008 Rev. 01 to
Rev. 02
USB-CANmodul2

AU5790 82C251 No1 Table case Yes
USB

powered
200mA

3204019 Rev. 01 to
Rev. 02
USB-CANmodul2

TJA1054 82C251 No1 Table case Yes
USB

powered
200mA

3404000
USB-CANmodul8

82C251 82C251 No1 Table case Yes
External

100 -
240 VAC

0mA

3004006
USB-CANmodul16

82C251
82C251

up to CH15
No1

19’’ rack-
mounted

Yes
External

100 -
240 VAC

0mA

3404001
USB-CANmodul16

82C251
82C251

up to CH15
No1 Table case Yes

External
100 -

240 VAC
0mA

mailto:support@systec-electronic.com

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 25

 CAN connector

No external CAN supply voltage is necessary for all USB-CANmodul types with high-speed CAN
transceivers. The low-speed versions require an external supply voltage for the CAN transceiver. Be
sure to note the limitations for the CAN transceivers when connecting the external supply voltage.

The pin assignment for the DB-9 CAN plug is shown in the table below:

Table 4: Pinout of the CAN DB-9 Plug

Pin

Pinout of DB-9 plug

with 82C251, TJA1054 (differential)
with AU5790 (single-wire)

only available with
USB-CANmodul2

1 N/C N/C

2 CAN-L N/C

3 GND GND

4 N/C N/C

5 CAN shield CAN shield

6 GND GND

7 CAN-H CAN-H

8 N/C N/C

9
N/C for USB-CANmodul1
N/C for USB-CANmodul8/16
VBAT (+7 to +27 VDC)* for USB-CANmodul2

VBAT (+5.3 to +16 VDC)*

Note:

The value for VBAT depends on the alternative CAN transceiver that populates the device.

The Common Mode Voltage between GND (Pin 3 or 6) and CAN-L (Pin 2) or CAN-H (Pin 7) is limited
to max. +12 VDC for using the high-speed CAN transceiver 82C251.

 Termination resistor for high-speed CAN Transceiver

Please note that there always has to be connected two termination resistors with value 120 Ohms, if
you are using an USB-CANmodul with a high-speed CAN transceiver 82C251. These has to be
connected to both ends of the CAN bus:

CAN-Bus

CAN_H

CAN_L

120 Ohm120 Ohm

termination
resistor at
bus begin

termination
resistor at
bus end

7 7

2 2

Figure 16: Termination resistors on CAN bus

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 26

Note:

When using a special version of the device featuring a low-speed CAN transceiver (e.g. TJA1054) no
terminating resistor must be used because it is already integrated in the device.

On USB-CANmodul2 USB-CANmodul8 and USB-CANmodul16 a termination resistor with 120 Ohms is
already built in for each high-speed CAN-channel. You can enable or disable it by closing a jumper
(JP200 and JP300 for USB-CANmodul2 – refer to Figure 8) or by switching a switch on front panel
(USB-CANmodul8, USB-CANmodul16). The default state of the termination resistor is: disabled.

If you decide to enable the termination resistor, change the appropriate switch to ON or close the
appropriate jumper.

The current state of the termination resistor can be indirectly read back by software only on
USB-CANmodul2 (by calling function UcanReadCanPort() and/or UcanReadCanPortEx() or by opening
the Ports Dialog in Control Panel Application USB-CANmodul Control – refer to Figure 32). Please note
that the jumper JP104 must have the same state as JP200 (for CAN-channel 0) and the jumper JP105
must have the same state as JP300 (for CAN-channel 1). Otherwise, the read state of the termination
resistor is not correct. The reason of this solution is the optical isolation of the CAN-channels.

Refer to Table 5 for recommended cable parameters of the CAN bus.

Table 5: Recommended cable parameters

max. cable length
[m]

max. bit rate
[kbps]

specific resistance
[kΩ/m]

Cable cross-section
[mm²]

30 1000 70 0,25..0,34

100 500 <60 0,34..0,60

500 100 <40 0,50..0,60

1000 20 <26 0,75..0,80

Note:

In case of highly electromagnetic disturbed applications, we advise to well ground each side of the
shield. Refer to the following standard: ISO11898-2:2003

- Section 3.10 - Physical media
- Section 7.5.1 - Physical medium specification – General
- Table 9 - Physical media Parameters of a pair of wires (shielded or unshielded)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 27

 CAN-port with low-speed CAN Transceiver

This section is not the scope of USB-CANmodul1.

The high-speed CAN transceiver 82C251 is implemented in the standard configuration of the device. As
an alternative, other CAN transceiver can be populated on the USB-CANmodul2. In this case only the
behavior on the CAN bus changes, not the behavior in relation to the software. From the software point
of view (e.g. using the included tool CANinterpreter Lite any transceiver can be used.

The optional low-speed transceiver TJA1054 or the single-wire transceiver AU5790 have multiple
signals for setting the operating mode of the transceivers and displaying the operating state. The
following signals are supported:

Table 6: Signals available for low-speed or single-wire CAN port

Signal Name Meaning Type Default value

EN Enable Enable control high-active output high level

/STB Standby Stand-by control low-active output high level

/ERR Error
error, wake-up and
power-on indication
output

low-active input high level

TRM Termination termination resistor high-active input low level

Note:

It is only possible to read the state of the termination resistor by software using USB-CANmodul2. It
reads the state of jumpers JP104 and JP105 (refer to Figure 8). Make sure jumper JP104 has the same
state as jumper JP200 and make sure jumper JP105 has the same state as jumper JP300 for the correct
use of this feature.

The signals /STB and EN of low-speed channel of USB-CANmodul2 (order code 3204019) cannot be
separately switched. They are both interconnected at the TJA1054.

The single-wire CAN transceiver AU5790 does not have an error output. Its operation modes are
described in Table 7.

Table 7: Control input for single-wire CAN port

/STB EN Description CANH

0 0 Sleep mode 0 V

0 1 Wake-up transmission mode 0 V, 12 V

1 0 High-speed transmission mode (83,3 kbps) 0 V, 4 V

1 1 Normal transmission mode (33,3 kbps) 0 V, 4 V

Use the API functions UcanWriteCanPort() and/or UcanWriteCanPortEx() to change the output state of
signals listed in Table 6 and Table 7. To read the input states of the signals listed in Table 6 use the API
functions UcanReadCanPort() and/or UcanReadCanPortEx().

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 28

 Expansion Port

Only the USB-CANmodul2 features an 8-bit port for functional expansion which can be used to add
digital inputs (e.g. push buttons) and digital outputs (e.g. LEDs) to the device. An additional 2*5-pin
header connector in 2.54 mm pitch (male, X400 – refer to Figure 8) is provided on the USB-CANmodul2
with order code 3204007. The connector X400 has the following pinout:

Table 8: Expansion Port Pin Assignment on USB-CANmodul2

Signal Pin Pin Signal

PB0 1 2 PB1

PB2 3 4 PB3

PB4 5 6 PB5

PB6 7 8 PB7

GND 9 10 Vcc Output

The microcontroller's port pins are connected directly to the expansion port, there is no protective circuit.
Make sure that external circuitry connected to this port does not exceed the maximum load tolerance of
the corresponding port pins (refer to Table 9)! The port pins can be configured to be used as inputs or
outputs.

Use the API functions UcanConfigUserPort() to configure the port direction of signals listed in Table 8.
To read the input states of the expansion port use the API functions UcanReadUserPort() and/or
UcanReadUserPortEx(). As well as use the API functions UcanWriteUserPort() to change the output
state of signals which are configured as output signal.

Table 9: Properties of port expansion on USB-CANmodul2

Symbol Parameter Condition min. typ. max. Unit

VIH Input High Voltage 2.0 5.5 V

VIL Input Low Voltage -0.3 0.8 V

VOH Output High Voltage IOUT = 8 mA 2.9 V

VOL Output Low Voltage IOUT = 8 mA 0.4 V

CIN Input Pin Capacitance 5 pF

IOUT Output Current 8.0 mA

VCC Supply Voltage 3.2 3.4 V

A user circuit of the Expansion Port depends on the necessity to which level the hardware of
USB-CANmodul has to be protected against destruction. You find an example of a user circuit without
protection in the next figure.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 29

Figure 17: Simple example circuit for Expansion Port

Please note that if Vcc is used as power supply for your circuit, the total current of an USB device may
not exceed 500 mA (during plug-in the total current actually may not exceed 100 mA). If bus powered
USB hubs are used, there could be problems even below 500 mA. Some USB hubs share its power
supply with the number of available USB ports. Please note that there could also be problems below
500 mA if other USB devices are connected to these ports. Thus, we advise to implement a galvanic
decoupled circuit that has its own power supply.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 30

 LEDs on the USB-CANmodul

Each USB-CANmodul device has a yellow power LED. It illuminates as soon as the power is connected
to the device (by connecting the device to a PC using an USB cable).

Additionally, the USB-CANmodul has a traffic LED and a status LED for each available CAN channel.
The green traffic LED is switched of as long as the CAN interface is not initialized. After initialization it
blinks when a CAN message is transferred on the CAN bus (for sending or reception). Figure 18 and
Figure 19 shows the principle of switching the traffic LED after the transmission of CAN messages on
the CAN bus. Each CAN messages starts a 256 ms cycle blinking the traffic LED.

Traffic LED
off

on

CAN bus IDLE IDLEmessage

256ms

IDLE

approx. 8 Hz

(Not to scale)

Figure 18: Traffic LED after one CAN message on CAN bus

Traffic LED
off

on

CAN bus IDLE IDLEmessage

256ms 256ms

messageIDLE IDLE IDLE

approx. 8 Hz

(Not to scale)

Figure 19: Traffic LED after more CAN messages on CAN bus

The state of each CAN-channel on the USB-CANmodul is displayed via a red LED. In order to distinguish
the states, different blinking cycles were defined respectively. A description of the power LED and the
state LED is shown in the Table 10. Figure 20 shows the different blinking cycles.

(Not to scale)

Figure 20: Blink cycles of the state LED

cycle 1:

cycle 2:

cycle 3:

approx. 10 Hz 1:1

approx. 1 Hz 1:1

approx. 4 Hz 3:1

on

off

on

off

on

off

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 31

Table 10: States of the LEDs on the USB-CANmodul devices

USB-CANmodul
connected?

LED yellow
(power)

LED red
(state)

Description

no off off No voltage is supplied to the device.

no 1 on blinking cycle 1 USB cable not connected.

yes on blinking cycle 1 Device logs in to the host-PC.

yes on on
Log-in successful, CAN-channel is not initialized,
no error.

yes on off CAN-channel is initialized, no error.

yes on blinking cycle 2 A CAN-bus error occurred on this channel.

yes on blinking cycle 3
Firmware update running. The device must not
be powered-off or disconnected while the
firmware update is running.

1 Only occurs on self-powered USB-CANmodul devices

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 32

3 Getting Started

Ensure that the individual components are not damaged. The delivery content of the USB-CANmodul
includes:

- One USB-CANmodul device

- One Installation CD-ROM with electronic version of the latest systems manual and all software
and drivers

- One USB cable

 System requirements

The system requirements are:

- Processor: 1 GHz or faster (2 GHz or faster recommended)

- RAM: 1 GB or more (2 GiB or more recommended)

- Approx. 32 MB free disc space

- USB port according USB 1.1 spec. or higher

- Microsoft Windows 10 and Windows 11.
Windows XP, 7, 8 and 8.1 are not supported any more.

Note:

For Windows 7, 8 and 8.1 please use the Setup version V5.16.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 33

 Installation of the driver under Windows-OS

Follow the steps below to install the device driver to your Windows PC:

1) Start your computer.

2) Insert the USB-CANmodul Utility CD-ROM in your CD-ROM drive. If you have downloaded
the driver from our homepage then continue with step 4).

3) Open the Windows Explorer and locate the following path:
"<CD-ROM>:\Products\USB-CANmodul_xxxxxx\Software\SO-387"
“xxxxxx” specifies the order code listed in Table 1.

4) Execute file SO-387.exe, which will start the setup tool. NOTE: You will need administrator
rights to execute this file! Enter the administrator password if Windows asks for it. The
following window will appear: Read and accept the License Agreement in the next window and
click Next.

5) Additional version information is displayed in next window. Click Next again.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 34

6) Edit all the user information in next window and click Next again.

7) In the next window you select the destination location of the USB-CANmodul software. We
recommend to use the predefined destination location. Click Next to continue.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 35

8) The following important note is displayed. Read it carefully and select “YES”, that you
understood the notice. Click the Next button again.

9) In the next window you select the type of installation you wish to perform (Full Installation is
recommended). Click the Next button again.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 36

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 37

10) Follow all further setup instructions to install the USB-CANmodul software until the Additional
settings page appears. The checkbox activates the check for newer driver version via Internet
at each start of the USB-CANmodul. We recommend to activate this checkbox. Click Next to
continue.

Note: Currently the automatically check for newer driver versions does not work because the
old server is down. The new SYS TEC cloud is currently not compatible with the
USB-CANmodul Control tool. Thus, the checkbox is disabled and deactivated now.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 38

11) Continue the installation by clicking the Install button. After the setup routine has installed all
needed files the hardware assistant is called automatically to register the kernel drivers. The
following windows may appear. Please check the checkbox for always trusting the software
from company SYS TEC electronic GmbH and click to the Install button.

 Note: On Windows 10 this dialog window is not shown.

12) The next page displays the revision information. Click the Next button to continue.

13) Finish the installation by clicking the Finish button.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 39

14) Connect the USB-CANmodul to your computer using the included USB cable. Windows
automatically detects the USB-CANmodul. The appropriate driver files will be found
automatically. The firmware will now be downloaded to the USB-CANmodul. The red status
LED blinks with a frequency of 4 Hertz 4:1 duty cycle to indicate this firmware update
procedure (refer to Figure 20 and Table 10).

15) After successful download of the device firmware the red status LED will stay on.

Note:

Do not unplug the USB cable from the PC and/or the USB-CANmodul before the firmware update
procedure is complete (refer to step 15)).

 Updating an existing installation

For updating the USB-CANmodul driver SYS TEC electronic AG provides a feature to download the
driver via Internet using the tool USB-CANmodul Control (refer to Figure 21).

Figure 21: USB-CANmodul Control Check for Update

Note:

Currently the automatically check for newer driver versions does not work because the old server is
down. The new SYS TEC cloud is currently not compatible with the USB-CANmodul Control tool.
Thus, the button and checkbox are disabled and deactivated now.

Click to the button Check for Updates to check for a newer driver version. If there is no newer version
a dialog box appears with the message “A newer version is not available”. Otherwise, a dialog box
appears with the message “A newer version is available. Please read the revision history and click
'Start Download'.”. The tab-sheet Update displays the revision history of the new driver:

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 40

Figure 22: USB-CANmodul Control Start Download

After the download has finished a dialog box appears with the message “Download successfully
finished. Click ‘Start Setup’.”. The button text on the bottom left changes to “Start Setup”. Click on
that button to start the installation.

The setup tool starts with the following message box:

Figure 23: Updating an existing installation

Click on the “Yes“-button to uninstall the old driver and to install the newer one.

You also can download the latest driver from our homepage http://www.systec-electronic.com. Extract
the downloaded ZIP file and execute the file SO-387.exe. Follow all steps described in section 3.2.

http://www.systec-electronic.com/

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 41

 Verifying the Device Installation

Verification of correct device installation on your host-PC can be done by following the steps listed
below:

- Open the System Control from the start menu of Windows.

- Choose the "Device Manager" at the top. It may be necessary to re-adjust the “View-By” mode
(top right corner of the window) to “Large Icons” or “Small Icons”.

- Click on the tree node "USB-CAN-Hardware". If the device "Systec USB-CANmodul Device
Driver" or "Systec USB-CANmodul Network Driver" is shown in the list, the new USB device
has been detected properly. This is shown in the figure below:

Figure 24: Device Manager with the USB-CANmodul

If the installation was not successful, check the installation steps as described above and try to re-install.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 42

3.4.1 Troubleshooting for device installation

- Case: The USB-CANmodul is connected via USB, the yellow power LED is on continuously
and the red status LED is blinking with approx. 10 Hz 1:1 duty cycle (see “cycle 1” in
section 2.6), but there is no tree node entry “USB CAN-Hardware” and no tree node entry
"Systec USB CANmodul Network Driver".

Activate the view for hidden devices in Device Manager by the menu “View” → “Show hidden
devices”. Now the device manager lists all known USB-CANmoduls which were ever be
connected to the PC. If they are currently not connected the icon is displayed greyed. If a module
is disabled the icon shows a downward pointing arrow. If there is such a deactivated module which
is not greyed, then activate the device by a right-click to that module and choose “Enable device”.
The missing module should now be visible even if the "Show hidden devices" option is turned off
again.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 43

 Device Number Allocation

With the help of device number allocation, it is possible to use more than one USB-CANmodul
simultaneously on the host-PC. The device number identifies the individual USB-CANmodul on the API
functions of the DLL.

- Click on Start → Programs → USB-CANmodul Utilities → Tools →
USB-CANmodul Control. The following window will appear:

Figure 25: USB-CANmodul Control tab-sheet Hardware

- Select/highlight one of the modules shown in the hardware list and then click on the Change...
button.

- Enter a new device number in the input field or modify the device number using the Up or Down
button. Click OK to exit this window.

- The new device number will only take affect and gets downloaded into the device after clicking
the Apply or OK button.

Figure 26: Device number changing dialog box

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 44

Note:

The device number of USB-CANmodul devices which are grayed out in the list cannot be changed
because they are exclusively used by other applications.

 Connection to a CAN Network

The USB-CANmodul provides a DB-9 plug for connection to the CAN network. The pin assignment on
this connector is in accordance to the CiA (CAN in Automation) specification. Connect your CAN network
to this connector with an appropriate CAN bus cable. The pinout is described in Table 4 on page 25.

Note:

When using the standard version of the USB-CANmodul with on-board high-speed CAN transceivers
(e.g. 82C251) a termination resistor of 120 Ohms at both ends of the CAN cable between CAN-L (pin 2
of the DB-9 plug) and CAN-H (pin 7 of the DB-9 plug) is required to ensure proper signal transmission.
When using a special version of the device featuring a low-speed CAN transceiver (e.g. TJA1054) no
terminating resistor must be used because it is already integrated in the device. It is necessary to use
shielded cables if the CAN bus extension exceeds 3 meters. Refer to section 2.3.

 Starting CANinterpreter Lite for USB-CANmodul

The included program CANinterpreter Lite is a CAN bus monitor for Windows.

Note:

The tool CANinterpreter is free of charge which was distributed by the company Emotas embedded
communication GmbH (http://www.emotas.de/).

- Start the utility program using the Windows Start button and browse to Programs →
USB-CANmodul Utilities → Tools → CANinterpreter Lite for USB-CANmodul.

http://www.emotas.de/

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 45

- The following window will appear:

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 46

- Click on menu Connection the command CAN Interface Settings:

Figure 27: Dialog box for CAN interface Overview in CANinterpreter Lite

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 47

- Select the baud rate of your CAN network in the Bitrate box and the CAN Device. This drop-
down box lists all currently connected USB-CANmoduls and CAN channels. The name of the
CAN Device has the format “Usb<devie_nr>Ch<channel_nr>”, whereas the parameter
<device_nr> is a value between 0 and 254 (refer to section 3.5 for how to allocate the device
numbers). The parameter <channel_nr> is “0” for all USB-CANmodul1 devices. For multi-
channel devices (e.g. USB-CANmodul2) two entries are listed in drop-down box: one for
channel 0 “Ch0” and one for channel 1 “Ch1”.

- If "user bit rate" is selected in the Bitrate field, then the values for register BTR Ext can be
entered directly. Activate the checkbox Show Advanced Configuration in this case to enter a
hexadecimal value. Refer to section 4.3.4 for detailed information.

- When using the USB-CANmodul8 or USB-CANmodul16 then always two CAN channels are
combined to a “logical device”. Refer to section 4.3.8 for detailed information how to find the
correct CAN channel via software.

- Click on the Add new interface button to save these settings. At next time the CAN Interface
Settings dialog is opened this setting is listed at the left side of the windows. Each change of
the settings on the right side must be updated by the button Update selected interface.

- Close the settings dialog by the Close button.

- Click on menu Connection the command Connect. The connection is shown in status bar of
the tool:

Figure 28: CANinterpreter Lite main window (connected)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 48

This screen is divided into two sections: CAN Rx and CAN Tx

• CAN RX: Monitors CAN messages that are received from one or more remote nodes and
 CAN messages that are sent by the USB-CANmodul (displayed in gray color).

• CAN Tx: Monitors CAN messages for being sent from the host-PC to the
 CAN network via the USB-CANmodul

- Directly edit the CAN messages for being sent in CAN Tx section:

Figure 29: Entering a new transmit message

- Specify EXT for 29-bit CAN identifier and/or RTR in field Type, the data length code (DLC) in
Len field, the data of the CAN message in fields 0 to 7. The CAN-ID and data may be specified
in hexadecimal or decimal format. Use the prefix “0x” for the hexadecimal format.

- Press the space bar to send the selected CAN message immediately.

- Alternatively, specify an interval time in milliseconds in Interval field. If the check box is activated

in column ∞, the CAN message will be sent periodically controlled by the tool.

Note:

The cycle period is controlled by the tool CANinterpreter which is contributed by the company
Emotas embedded communication GmbH. This tool cannot be changed by the company
SYS TEC electronic AG. Additionally, the Windows operation system is not a real-time OS.
Therefore, the real transmission interval on the CAN bus is not exactly as specified in the
Interval field.

Refer to section 4.2.2 for further information about the tool CANinterpreter Lite.

Alternatively, you can use the Emotas CANinterpreter standard version with the USB-CANmodul which
has additional features:

- Interpretation of CAN-Data according to user specifications

- Flexible CAN-ID specific filtering

- Transmission of CAN messages or sequences in single or periodic

You can download an evaluation version of the tool as standard version at the SYS TEC homepage
http://www.systec-electronic.com.

http://www.systec-electronic.com/

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 49

 Creating a debug file from DLL

If problems with the software drivers should occur, there is a possibility to create a debug log file
from USBCAN32.DLL and/or USBCAN64.DLL. You should always send this log file to our support email
address so that we can find a solution for your problem.

To activate the feature please open USB-CANmodul Control from the control panel. At the tab-sheet
Debug you will find the following window:

Figure 30: Debug settings in USB-CANmodul Control

Enable the feature by ticking the box “Enable Debug”. In the list above you can activate different debug
information that should be added to the debug log file. Click to “Browse” for choosing the folder in which
the debug log file should be stored. The default setting is the "Documents" folder.

Apply the new settings and close USB-CANmodul Control. Start your application using an
USB-CANmodul and wait until the problem will occur. After this close your application.

Afterwards, you will find a file named USBCAN_XXXXXXXX_YYYYYY_ZZZ.LOG. XXXXXXXX
represents the creation date of the log file in format YYYYMMDD (year month day) and YYYYYY stands
for the creation time in format HHMMSS (hour minute second). ZZZ is the name of the application
executed.

Note:

Enabling this feature decreases the performance of the software, because API functions have to execute
much more code to generate debug outputs. Limiting the debug information by changing the LOG-Level
can help to increase performance again. But note that in this case important information could be missing
in the log file.

Furthermore, the debug log file may increase in size. Activate the feature “Check max. LOG file size”.
This way, USBCAN32.DLL and/or USBCAN64.DLL will monitor the file size of the debug log file. If it is
exceeded, a new debug log file will be started. Default setting of the maximum debug file size is 10240
Kbytes (means 10 Mbytes).

An application can call the function UcanSetDebugMode() for subsequent activation of the feature.

With the Check-Box "Show Dbg Info" you can set, whether a dialog box should be opened upon
opening an application, reminding of activated debug feature. This is to avoid that debug feature remain
continuously activated without being noted filling the main board with log-files.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 50

At the bottom of the list of log functionality you find check boxes for logging kernel outputs too. If at least
one of the kernel checkboxes is activated a kernel trace file
USBCAN_Trace_XXXXXXXX_OSYYYYYYYYY_ZZZZZZZ.etl is written to the output folder.
XXXXXXXX represents the hexadecimal version number of the kernel driver file and YYYYYY stands
for the detailed version of the Windows OS. ZZZ is an additional information of the Windows OS (e.g.
Service Pack information).

Example:

USBCAN_Trace_00000A05_OS2#64#V6.1.7601_Service Pack 1.etl

Note:

If using the debug feature for kernel outputs always follow the following sequence:

 1. Activate the Debug Feature in USB-CANmodul Control

 2. Close the USB-CANmodul Control

 3. Start your application until the problem occurs

 4. Deactivate the Debug Feature in USB-CANmodul Control

 5. Close the USB-CANmodul Control

 6. Locate the ETL file using the File Explorer and send it to the SYS TEC support

The Windows OS only can complete all write operations to the ETL file after the Debug Feature is
deactivated in USB-CANmodul Control. If the tool is not closed then the ETL file does not contain all the
debug information. In this case it would be not helpful for any support assistance.

 Activation of the network driver

The Network Driver UCANNET.SYS was developed for connecting several applications to one physical
USB-CANmodul. Therefore, the kernel mode driver creates a virtual CAN network for each physical
module to which several applications can connect to. All CAN messages that are sent by an application
are not only sent to the physical CAN bus but also to all the other connected applications. Received
CAN messages are passed on to all applications.

To activate the network driver for an USB-CANmodul, open the USB-CANmodul Control from the
Control Panel. Mark the module within the hardware list that you want to use for the network driver. Push
the button "Change…" to open the dialog box shown in Figure 26. Check the box
"use USB-CANnetwork driver" and confirm with "OK". After pushing the button "Apply" or "OK" in the
main window of the USB-CANmodul Control, the USB-CANmodul automatically reconnects to the host
PC. This results in exchanging the kernel mode driver. Now you can use several applications with this
USB-CANmodul.

Each USB-CANmodul which is configured to us the network driver is marked with “net” in column “drv”
in tab-sheet Hardware of the USB-CANmodul Control (refer to Figure 25).

Note:

Since software version V6.00 only the USB-CANmodul Network Driver is available. The standard driver
is removed.

 Completely uninstall the driver

To completely uninstall the driver, tools and examples we recommend to use the command
Windows Start Menu → Programs → USB-CANmodul Utilities →
Uninstall USB-CANmodul Utilities. Follow all steps to uninstall the driver.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 51

Note:

The Microsoft Windows operation system keeps some system files and registry keys after the
uninstallation process. The following files may be deleted manually from the folder
“%windir%\system32\drivers\” or “%windir%\syswow64\”: ucannet.sys, usbcan.sys, usbcanl3.sys,
usbcanl4.sys, usbcanl5.sys, usbcanl21.sys and usbcanl22.sys. But the appropriate registry keys
under “HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB\” cannot be deleted.

Under Windows 10 and 11 there is no link to the uninstallation of the driver. In this case use Programs
and Features of the control panel.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 52

4 Software Support for Windows OS

 File Structure

If during the installation of the USB-CANmodul Utilities no other destination directory is given, then all
files will be installed in the folder:

C:\Program Files\SYSTEC-electronic\USB-CANmodul Utility Disk

Using the 64-bit version of Windows OS the default destination directory is:

C:\Program Files (x86)\SYSTEC-electronic\USB-CANmodul Utility Disk

The contents of this folder are given in Table 11. Some folders are created depending on selected
installation options during setup process.

Table 11: Software file structure

Sub-folder Contents

Bin\ Executable files (e.g. Usbcancp.exe as USB-CANmodul Control)

CANinterpreter CANinterpreter Lite for USB-CANmodul for Windows

 Linux\ CANinterpreter Lite for USB-CANmodul for Linux as ZIP file

Contrib\ Files contributed by other companies

 LabView\ LabView driver with demo

Docu\ Manuals

drv\ 1

drv.win7\ 3

drv.win10\ 3

Windows Kernel drivers (current version)

drv.418\ 1

lib.418\ 2

USBCAN32.DLL and USBCAN64.DLL version V4.18 which fixes an issue
initializing an USB-CANmodul with firmware version since V5.00.

Examples\ Demo projects for MS Visual Studio 2008 and 2010

 Demo.api\ A simple MFC demo in source for a single channel USB-CANmodul

 DemoCyclicMsg\
A simple MFC demo in source for automatically transmission of cyclic
CAN messages using

 DemoEnum\
A simple MFC demo in source using the API function for enumerating the
connected USB-CANmodul

 DemoGW006\ A simple MFC demo in source for a dual-channel USB-CANmodul

 Include\
Header files in C language for the USBCAN32.DLL / USBCAN64.DLL. All
demo applications for MS Visual Studio refers to these files.

 Lib\
Common USBCAN32.DLL / USBCAN64.DLL and import- libraries for MS
Visual Studio. The demo applications refer to these import-libraries.

 UcanDotNET\ Wrapper-DLL in source code for use with Microsoft .NET projects.

 USBcanDemoVB\
MS Visual Basic .NET demo application in source code (using the
Wrapper-DLL UcanDotNET.dll)

firmware\ 2 Includes the firmware written to the USB-CANmodul hardware.

Footnotes:
1 Only available in driver version below V6.00.
2 Only available in driver version since V6.00.
3 Only available in driver version since V6.00 depending on the used Windows version.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 53

 Tools for the USB-CANmodul

4.2.1 USB-CANmodul Control for Windows

The USB-CANmodul Control tool can be started either from the Windows Control Panel or from the
program group "USB-CANmodul Utilities". Figure 25 shows the tool after start up.

Configuration of device number

This tool may be used to modify the device number of the USB-CANmodul devices (also refer to
section 3.5).

Configuration of higher performance

For the modules listed in Table 1 the tool USB-CANmodul Control can increase the performance of an
USB-CANmodul by clicking to the button “Change…” since driver version V5.11. If activated the CPU
frequency is increased from 96 MHz to 120 MHz (increased by 25%). This has an effect on the bit rates
on the CAN bus (refer to section 4.3.4.3). Note that the checkbox is not available for older generations
of the USB-CANmodul devices.

Figure 31: Activation of higher performance

Configuration and manipulation of 8.bit expansion port and CAN port

In addition, this tool can also be used to manipulate the 8-bit port expansion (refer to section 2.5) and
the CAN port for low-speed CAN transceivers (refer to section 2.4). To do this you have to select the
corresponding USB-CANmodul from the list and then click on the "Ports…" button.

Figure 32 shows the dialog box that will appear when choosing this option.

Figure 32: Dialog box for manipulating the port expansion and the CAN port

Initially all 8 signals are configured as inputs. With the line OE, the corresponding signal is switched to
an output. This activates the box for the output value in the line OUT. If a signal is switched to a logical 1
in this line, then the corresponding signal on the port expansion will be set to high. With every
modification the current state of the expansion port will be read again and shown in the line IN for the

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 54

inputs. To read the current input states without having to change an output, click on the "Update Input"
button.

The current state of the CAN port for the low-speed CAN transceiver is displayed in the bottom of the
window. The signals EN and /STB are outputs and the signals /ERR and /TRM are inputs. For more
information refer to section 2.4.

Note:

Since Version V6.07 the USB-CANmodul Control does not request the Windows Administrator rights on
startup of that tool. But some settings still require the Windows Administrator privilege.

If the tool was started without Windows administrator rights, then a button "RunAsAdmin" appears in the
upper right corner and some commands are disabled. Click to this button if you need to change these
settings.

Configuration of Auto Reconnect feature

To be able to configure the Auto-Reconnect feature, the tool must be started with the Windows
administrator privilege. Right-click on the module in the hardware tab-sheet to open the context menu
and select “Set Reconnect Timeout”.

Figure 33: Configuration of Auto Reconnect feature

The value for Timeout Firmware is written to the EEPROM of the USB-CANmodul. The value 0
deactivates the timeout monitoring within the firmware. The Default value is 10000ms. If this monitoring
is switched on, then the firmware monitors the cyclic requests of the status channel via USB. If the
firmware does not receive these cyclic requests after the timeout has expired, then the firmware
performs a software reset to reconnect to the PC via USB.

The value for Timeout PC is written to the Windows Registry. If activated, if an application uses a
USB-CANmodul and if the PC detects a USB bus error due to disturbances on the USB line, then the
USBCAN.DLL automatically executes a re-enumeration of the USB-CANmodul. The Timeout PC
specifies how long the USBCAN.DLL waits until the USB-CANmodul logs on to the PC again. The
value 0 deactivates the timeout monitoring within the USBCAN.DLL. In this case no re-enumeration is
processed and the event USBCAN_EVENT_FATALDISCON is triggered. the value -1 configures an
infinite waiting for USB-CANmodul is logging on to the PC again.

4.2.2 CANinterpreter Lite for Windows

The Windows utility CANinterpreter Lite can be used to display CAN messages transmitted via the
CAN bus.

Note:

The tool CANinterpreter is free of charge which was distributed by the company Emotas embedded
communication GmbH (http://www.emotas.de/).

For detailed information read the manual of the CANinterpreter which is included in the tool. Click to the
menu command Help → Manual to read this manual. A PDF document is opened in this case.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 55

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 56

 Description of the USBCAN32.DLL / USBCAN64.DLL

The USBCAN32.DLL / USBCAN64.DLL is a function library for application programs. It serves as an
interface between the system driver layer and an application program. The library for the
USB-CANmodul enables easy access to the USB-CAN system driver functions. It administers the
opened USB-CANmodul and translates the USB data into CAN messages.

Add the file USBCAN32.LIB or USBCAN64.LIB to your project for static linking the DLL file to your own
Microsoft Visual C/C++ project. Starting the application program automatically loads the DLL. If the LIB
is not linked to the project, or you are using another environment (e.g. Borland C++ Builder), load the
DLL manually with the Windows API function LoadLibrary() and add the library functions with the
function GetProcAdress() (refer to the demo application “DemoGW006”).

The PUBLIC calling convention of the DLL functions provides a standardized interface to the user. This
standard interface ensures that users of other programming languages than C/C++ (Pascal, etc.) are
able to use these functions.

The subfolders Examples\Demo.api, Examples\DemoGW006 and Examples\DemoCyclicMsg contains
example programs (Demos) created by using MFC for Microsoft Visual C/C++. These example projects
demonstrate the use of the DLL API functions.

4.3.1 The concept of the DLL

With the DLL, it is possible to use up to 64 USB-CANmodul devices simultaneously with one application
program, as well as with several application programs. However, it is possible to use one
USB-CANmodul with several application programs if it is configured to use the network driver (refer to
section 3.9).

Three states within the software are generated for each USB-CANmodul when using this DLL (refer to
Figure 34).

After starting the application program and loading the DLL, the software is now in the DLL_INIT state.
Concurrently, all required resources for the DLL have been created.

Calling the DLL function UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2() as well
as UcanEnumerateHardware() causes the software to change into the HW_INIT state. This state
contains all resources required for communication with the USB-CANmodul. It is not possible to transmit
or to receive CAN messages in this state.

If the application software calls the library function UcanInitCan(), UcanInitCanEx() or UcanInitCanEx2()
the state changes into CAN_INIT. In this state it is possible to transmit or to receive CAN messages.

Return with the library function UcanDeinitCan() or UcanDeinitCanEx() into the state HW_INIT and with
the library function UcanDeinitHardware() into the state DLL_INIT. It is possible to close the application
program only after this sequence is completed.

DLL_INIT HW_INIT CAN_INIT

DLL loaded

DLL unloaded

UcanInitHardware()
UcanInitHardwareEx()

UcanInitHardwareEx2()
UcanEnumerateHardware()

UcanInitCan()
UcanInitCanEx()

UcanInitCanEx2()

UcanDeinitHardware() UcanDeinitCan()
UcanDeinitCanEx()

Figure 34: Software State Diagram

Note:

Make sure to return to the state DLL_INIT before closing the application program.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 57

The number of available functions differs in the different software states. For example, the function
UcanWriteCanMsg() causes an error if the software state is DLL_INIT for the appropriate
USB-CANmodul. Table 12 shows the availability of each function within each state.

If multiple USB-CANmodul devices are used in one application, these states have to be considered for
each USB-CANmodul that is used. If the first USB-CANmodul is in the state CAN_INIT, the second one
could still be in the DLL_INIT state.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 58

Table 12: Available API functions according the software state

 state API functions single-
channel

multi-
channel

 DLL_INIT UcanSetDebugMode() X X

UcanGetVersion() X X

UcanGetVersionEx() X X

UcanInitHwConnectControl() X X

UcanInitHwConnectControlEx() X X

UcanEnumerateHardware() X X

UcanInitHardware() X X

UcanInitHardwareEx() X X

UcanInitHardwareEx2() X X

UcanDeinitHwConnectControl() X X

 HW_INIT UcanGetFwVersion() X X

UcanGetHardwareInfo() X X

UcanGetHardwareInfoEx2() P0 X

UcanSetDeviceNr() X X

UcanGetModuleTime() X X

UcanGetStatus() X C0

UcanGetStatusEx() P0 X

UcanResetCan() X C0

UcanResetCanEx() P0 X

UcanInitCan() X C0

UcanInitCanEx() X C0

UcanInitCanEx2() P0 X

UcanWriteCanPort() - C0

UcanWriteCanPortEx() - X

UcanReadCanPort() - C0

UcanReadCanPortEx() - X

UcanConfigUserPort() - X

UcanWriteUserPort() - X

UcanReadUserPort() - X

UcanReadUserPortEx() - X

UcanDefineCyclicCanMsg() P0 X

UcanReadCyclicCanMsg() P0 X

UcanDeinitHardware() X X

 CAN_INIT UcanSetTxTimeout() - X

UcanSetBaudrate() X C0

UcanSetBaudrateEx() P0 X

UcanSetAcceptance() X C0

UcanSetAcceptanceEx() P0 X

UcanReadCanMsg() X C0

UcanReadCanMsgEx() P0 X

UcanWriteCanMsg() X C0

UcanWriteCanMsgEx() P0 X

UcanGetMsgCountInfo() X C0

UcanGetMsgCountInfoEx() P0 X

UcanEnableCyclicCanMsg() P0 X

UcanGetMsgPending() P0 X

UcanGetCanErrorCounter() P0 X

UcanDeinitCan() X C0

UcanDeinitCanEx() P0 X

Meaning of entries in Table 12:

 "-" Function not supported

 "X" Function supported without limitations

 "C0" Function supported for each module with one CAN-channel (USB-CANmodul1) and/or only for CAN-channel
0 of a logical module with two CAN-channels (e.g. USB-CANmodul2), because the function parameter for
selecting the channel number is missing.

 "P0" Function only supported with function parameter selecting CAN-channel 0 of a logical module, because the
hardware does only have one CAN-channel (USB-CANmodul1). The function parameter specifying the CAN
channel always must be set to USBCAN_CHANNEL_CH0.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 59

4.3.2 API Functions of the DLL

This section describes the various API functions provided by the USBCAN32.DLL/USBCAN64.DLL.
Most of the functions return a value of the type UCANRET containing an error code (refer to
section 4.3.3). The meaning of this code is the same for each function. Besides the syntax, the meaning
and the parameters of each function, the possible error codes are shown.

Some of the extended functions have an additional parameter for support of multi CAN channels and
enable operations on a dual-channel module (USB-CANmodul2). These extended functions are also
applicable on a single CAN-channel module (USB-CANmodul1), as long as CAN channel 0 is used for
the parameter specifying the channel. Otherwise, the functions returns with error code
USBCAN_ERR_ILLCHANNEL (refer to section 4.3.3). All standard (single-channel) functions are
applicable for a dual-channel module (USB-CANmodul2) as well, but do not provide the possibility to
access other CAN-channels than the first channel.

4.3.2.1 General API functions

Function: UcanSetDebugMode

Syntax: BOOL PUBLIC UcanSetDebugMode (DWORD dwDbgLevel_p,

 _TCHAR* pszFilePathName_p,

 DWORD dwFlags_p);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: This function enables the creation of a debug log file out of the DLL. If
this feature has already been activated via the
USB-CANmodul Control, the content of the “old” log file will be copied
to the new file. Further debug information will be appended to the new
file.

Parameter:

 dwDbgLevel_p: Bit mask which enables the activation of debug information to be
written into the debug log file. This Bit mask has the same meaning as
the “LOG-Level” of the USB-CANmodul Control. Refer to section 3.8
and Table 13.

 pszFilePathName_p: Path leading to a text-based file which is written by the DLL with
debug information. This parameter may be set to NULL. In this case
only the new value of parameter dwDbgLevel_p will be set

 dwFlags_p: Additional flag parameter. Value 0 will create a new debug log file. If
the file referring to parameter pszFilePathName_p does already exist,
the old content will be deleted upon opening. Value 1 though will
append all new debug information to an existing file.

Return: If FALSE returns, the debug log file could not be created. A possible
reason could be that the directory path which is set by the parameter
pszFilePathName_p does not exist.

Example:

 // set debug mode for USBCAN API

 UcanSetDebugMode (0xE0C00B03L, // = default Debug-Level

 _T("C :\\MyAppPath\\MyApp.log"),

 0); // = no append mode

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 60

Table 13: Constants for the debug level passed to function UcanSetDebugMode()

Name Value Description

UCAN_DEBUG_LVL_FCT 0x00000001
Writes all called API function names into the log
file.

UCAN_DEBUG_LVL_PARAM 0x00000002
Writes all function parameters of the called API
functions into the log file.

UCAN_DEBUG_LVL_RESULT 0x00000004
Writes all function results of the called API
functions into the log file.

UCAN_DEBUG_LVL_READMSG 0x00000100
Writes the call of API functions UcanReadMsg()
and/or UcanReadMsgEx() into the log file.

UCAN_DEBUG_LVL_WRITEMSG 0x00000200
Writes the call of API functions UcanWriteMsg()
and/or UcanWriteMsgEx() into the log file.

UCAN_DEBUG_LVL_STATUS 0x00000400
Writes the call of API functions UcanGetStatus()
and/or UcanGetStatusEx() into the log file."

UCAN_DEBUG_LVL_CMD 0x00000800
Writes internal commands into the log file which
are sent to the module’s firmware.

UCAN_DEBUG_LVL_SYS 0x00001000 Writes all system calls into the log file.

UCAN_DEBUG_LVL_SERVERTHREAD 0x00200000
Using the network driver it writes information
into the log file which are sent to or received
from other processes.

UCAN_DEBUG_LVL_DEVNOTTHREAD 0x00400000
Writes debug information about the device
notification (plug & play) into the log file.

UCAN_DEBUG_LVL_DATATHREAD 0x00800000
Writes debug information of data thread into the
log file.

UCAN_DEBUG_LVL_CPL 0x04000000
Writes debug information of
USB-CANmodul Control into the log file.

UCAN_DEBUG_LVL_BUFFINFO 0x08000000
Writes information of receive and/or transmit
buffer of CAN messages into the log file.

UCAN_DEBUG_LVL_TIMESTAMP 0x10000000
Adds the Windows timestamp to each received
and/or sent CAN messages into the log file.

UCAN_DEBUG_LVL_DUMP 0x20000000
Dumps the raw data of CAN messages into the
log file.

UCAN_DEBUG_LVL_ERROR 0x40000000 Writes all error messages into the log file.

UCAN_DEBUG_LVL_ALWAYS 0x80000000 Writes all general information into the log file.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 61

Function: UcanGetVersion

Syntax: DWORD PUBLIC UcanGetVersion (void);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: This function returns the software version number of the USBCAN-
library. It is overage and should not be used in current projects. Use
the function UcanGetVersionEx() instead of.

Parameter: none

Return: Software version number as DWORD with the following format:

Bit 0 to 7: least significant digits of the version number in
binary format

Bit 8 to 15: most significant digits of the version number in
binary format

Bit 16 to 30: reserved

Bit 31: 1 = customer specific version

Function: UcanGetVersionEx

Syntax: DWORD PUBLIC UcanGetVersionEx (tUcanVersionType VerType_p);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: This function returns the version numbers of the individual software
modules.

Parameter:

 VerType_p: Type of version information shows from which software module the
version is to be returned. Table 14 lists all possible values for this
parameter. The format of the version information differs from that of
the UcanGetVersion() function.

Return: Software version number as DWORD using the following format:

Bit 0-7: Version (use macro USBCAN_MAJOR_VER)

Bit 8-15: Revision (use macro USBCAN_MINOR_VER)

Bit 16-31: Release (use macro USBCAN_RELEASE_VER)

Example:

DWORD dwVersion;

_TCHAR szVersion[16];

...

 // get the DLL version number

 dwVersion = UcanGetVersionEx (kVerTypeUserDll);

 // convert into a string

 _stprintf (szVersion, _T(„V%d.%02d.%d“),

 USBCAN_MAJOR_VER(dwVersion),

 USBCAN_MINOR_VER(dwVersion),

 USBCAN_RELEASE_VER(dwVersion));

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 62

Table 14: Constants for the type of version information for function UcanGetVersionEx()

Name Value Description
Available for version

<V5.00 <V6.00 >=V6.00

kVerTypeUserDll
kVerTypeUserLib

0x0001 Returns the version of the DLL. Yes Yes Yes

kVerTypeSysDrv 0x0002
Returns the version of the file
USBCAN.SYS (device driver).

Yes Yes No

kVerTypeNetDrv 0x0004
Returns the version of the file
UCANNET.SYS (network driver).

Yes Yes Yes

kVerTypeSysLd 0x0005
Obsolete - returns the version of loader
USBCANLD.SYS for USB-CANmodul of
first generation (GW-001).

Yes No No

kVerTypeSysL2 0x0006
Obsolete - returns the version of loader
USBCANL2.SYS for USB-CANmodul of
second generation (GW-002).

Yes No No

kVerTypeSysL3 0x0007
Obsolete - returns the version of loader
USBCANL3.SYS for USB-CANmodul8/16
of third generation.

Yes Yes No

kVerTypeSysL4 0x0008
Obsolete - returns the version of loader
USBCANL4.SYS for USB-CANmodul1 of
third generation.

Yes Yes No

kVerTypeSysL5 0x0009
Obsolete - returns the version of loader
USBCANL5.SYS for USB-CANmodul2 of
third generation.

Yes Yes No

kVerTypeCpl 0x000A
Returns the version of the file
USBCANCL.CPL (USB-CANmodul Control
from Windows Control Panel).

Yes Yes Yes

kVerTypeSysL21 0x000B
Returns the version of loader
USBCANL21.SYS for USB-CANmodul2.

No Yes No

kVerTypeSysL22 0x000C Returns the version of loader
USBCANL22.SYS for USB-CANmodul1.

No Yes No

kVerTypeSysL23

0x000D

Returns the version of loader

USBCANL23.SYS for USB-CANmodul8

and/or USB-CANmodul16.

No Yes No

kVerTypeSysLex 0x000E
Returns the version of the Extended
Loader USBCANLEX.SYS for all
USB-CANmodul types of 4th generation.

No No Yes

Note:

The function UcanGetVersionEx() returns the value 0x00000000 if the appropriate software module is
not available or if an unknown type is used for the parameter VerType_p.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 63

Function: UcanGetFwVersion

Syntax: DWORD PUBLIC UcanGetFwVersion (tUcanHandle UcanHandle_p);

Usability: HW_INIT, CAN_INIT

Description: This function returns the version number of the firmware in the
USB-CANmodul.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

Return: Firmware version number as DWORD using the following format:

Bit 0-7: Version (use macro USBCAN_MAJOR_VER)

Bit 8-15: Revision (use macro USBCAN_MINOR_VER)

Bit 16-31: Release (use macro USBCAN_RELEASE_VER)

The version number format is the same format as in the function
UcanGetVersionEx().

Function: UcanInitHwConnectControl

Syntax: UCANRET PUBLIC UcanInitHwConnectControl (

 tConnectControlFkt pfnConnectControl_p);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: Initializes the supervision for recently connected USB-CANmodul
devices. If a new module is connected to the PC, the callback function
that is indicated in the parameter will be called. This callback function
is also called if a module is disconnected from the PC.

Alternatively the function UcanInitHwConnectControlEx() can be used
to pass a user-defined parameter to the callback handler.

Parameter:

 pfnConnectControl_p: Pointer to the connect control callback function that has to be called if
a new USB-CANmodul is connected or disconnected. This pointer
must not be NULL!

Return: Error code of the function – refer to Table 25

The callback function must have the following format (refer to section 4.3.7.1):

void PUBLIC AppConnectControlCallback (BYTE bEvent_p, DWORD dwParam_p);

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 64

Function: UcanInitHwConnectControlEx

Syntax: UCANRET PUBLIC UcanInitHwConnectControlEx (

 tConnectControlFktEx pfnConnectControlEx_p,

 void* pCallbackArg_p);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: Initializes the supervision for recently connected USB-CANmoduls as
function UcanInitHwConnectControl() does.

Unlike function UcanInitHwConnectControl(), this function has an
additional parameter, which is also passed to the callback function.
This parameter can be used to handle user-specific information, such
as the used CAN instance for example.

Parameter:

 pfnConnectControlEx_p: Pointer to the connect control callback function that has to be called if
a new USB-CANmodul is connected or disconnected. This pointer
must not be NULL!

 pCallbackArg_p: User-specific parameter that is passed to the callback function as
well. This parameter may be NULL.

Return: Error code of the function – refer to Table 25

The callback function must have the following format (refer to section 4.3.7.1):

void PUBLIC AppConnectControlCallbackEx (DWORD dwEvent_p,

 DWORD dwParam_p, void* pArg_p);

Attention:

This function must not be used simultaneously with function UcanInitHwConnectControl() within the
same application!

Function: UcanDeinitHwConnectControl

Syntax: UCANRET PUBLIC UcanDeinitHwConnectControl (void);

Usability: DLL_INIT, HW_INIT, CAN_INIT

Description: This function finishes the monitoring of the recently connected or
disconnected USB-CANmodul devices. This function must be called
before closing the application but only if the function
UcanInitHwConnectControl() or UcanInitHwConnectControlEx() was
called before.

Parameter: none

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 65

Function: UcanEnumerateHardware

Syntax: DWORD PUBLIC UcanEnumerateHardware (

 tUcanEnumCallback pfnEnumCallback_p, void* pCallbackArg_p,

 BOOL fEnumUsedDevs_p,

 BYTE bDeviceNrLow_p, BYTE bDeviceNrHigh_p,

 DWORD dwSerialNrLow_p, DWORD dwSerialNrHigh_p,

 DWORD dwProductCodeLow_p, DWORD dwProductCodeHigh_p);

Usability: DLL_INIT

Description: This function scans all USB-CANmodul devices connected at the host
and calls a callback function for each found module. The amount of
the USB-CANmodul devices to be found can be limited by filter
parameters. Within the callback function the user can decide whether
the found USB-CANmodul should be automatically initialized by the
DLL. In this case the module changes to the state HW_INIT.

Parameter:

 pfnEnumCallback_p: Pointer to the Enumeration Callback Function which is called for each
found USB-CANmodul. This callback function is not called if the filter
parameters does not match. This parameter must not be NULL.

 pCallbackArg_p: User-specific parameter that is passed to the callback function as
well.

 fEnumUsedDevs_p: Set to TRUE if USB-CANmodul devices shall be found too which are
currently exclusively used by another application. These modules
cannot be used by the own application instance.

 bDeviceNrLow_p,
bDeviceNrHigh_p:

Filter parameters for the device number. The value bDeviceNrLow_p
specifies the lower limit and the value bDeviceNrHigh_p specifies the
upper limit of the device number which have to be found.

 dwSerialNrLow_p,
dwSerialNrHigh_p:

Filter parameters for the serial number. The values specify the lower
and upper limit of the serial number area which have to be found.

 dwProductCodeLow_p,
dwProductCodeHigh_p:

Filter parameters for the Product-Code. The values specify the lower
and upper limit of the Product-Code area which have to be found.
Possible values are shown in Table 18.

Return: This function returns the number of found USB-CANmodul devices
(logical modules). The value includes the modules which are
exclusively used by other applications if parameter
fEnumUsedDevs_p is set to TRUE.

Example 1:

DWORD dwFoundModules;

 ...

 // find all USB-CANmoduls, which are NOT used by other applications

 dwFoundModules = UcanEnumerateHardware (AppEnumCallback, NULL,

 FALSE,

 0, ~0, // no limitation of device number

 0, ~0, // no limitation of serial number

 0, ~0); // no limitation of Product-Code

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 66

Example 2:

DWORD dwFoundModules;

 ...

 // find all USB-CANmoduls of typ USB-CANmodul1 (G4)

 dwFoundModules = UcanEnumerateHardware (AppEnumCallback, NULL,

 FALSE,

 0, ~0, // no limitation of device number

 0, ~0, // no limitation of serial number

 USBCAN_PRODCODE_PID_BASIC_G4, USBCAN_PRODCODE_PID_BASIC_G4);

 ...

Example 3:

DWORD dwFoundModules;

DWORD dwSerialNr;

 ...

 // find all logical modules of an USB-CANmodul16 (G3)

 dwSerialNr = 123456; // <-- serial number at the sticker at the device case

 dwFoundModules = UcanEnumerateHardware (AppEnumCallback, NULL,

 FALSE,

 0, ~0, // no limitation of device number

 (dwSerialNr * 1000) + 1, (dwSerialNr * 1000) + 8,

 USBCAN_PRODCODE_PID_USBCAN16_G4, USBCAN_PRODCODE_PID_USBCAN16_G4);

 ...

Also refer to example on page 138.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 67

Function: UcanInitHardware

Syntax: UCANRET PUBLIC UcanInitHardware (

 tUcanHandle* pUcanHandle_p,

 BYTE bDeviceNr_p,

 tCallbackFkt pfnEventCallback_p);

Usability: DLL_INIT

Description: Initializes an USB-CANmodul. The software changes into the state
HW_INIT. From this point, the functions in section HW_INIT can be
called (refer to Table 12). If the function was executed successfully,
the function transfers an USBCAN handle to the variable addressed
by the pointer pUcabHandle_p. Other functions communicating with
device have to be called with this handle.

Alternatively, the function UcanInitHardwareEx() can be used to pass
a user-defined parameter to the callback handler. This function must
be used if a multi-channel USB-CANmodul is used and the event
callback handler is not NULL.

Parameter:

 pUcanHandle_p: Pointer to the variable for the USBCAN Handle. This pointer must not
be NULL!

 bDeviceNr_p: Device number of the USB-CANmodul (0 – 254). The value
USBCAN_ANY_MODULE (= 255) let initialize the first allocated
USB-CANmodul.

 pfnEventCallback_p: Pointer to an event callback function related to this USB-CANmodul.
This value can be NULL. In this case no callback function will be
called if corresponding events appear. This address can be same as
one that is already registered for other USB-CANmoduls, because the
callback function passes the associated USBCAN handle.

Return: Error code of the function – refer to Table 25

The event callback function must have the following format (refer to section 4.3.7.2):

void PUBLIC AppEventCallback (tUcanHandle UcanHandle_p, BYTE bEvent_p);

Example:

UCANRET bRet;

tUcanHandle UcanHandle;

 ...

 // initializes an USB-CANmodul without callback function

 bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MODULE, NULL);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 68

Function: UcanInitHardwareEx

Syntax: UCANRET PUBLIC UcanInitHardwareEx (

 tUcanHandle* pUcanHandle_p,

 BYTE bDeviceNr_p,

 tCallbackFkt pfnEventCallbackEx_p,

 void* pCallbackArg_p);

Usability: DLL_INIT

Description: Initializes an USB-CANmodul. The software changes into the state
HW_INIT. From this point, the functions in section HW_INIT can be
called (refer to Table 12). If the function was executed successfully,
the function transfers an USBCAN handle to the variable addressed
by the pointer pUcabHandle_p. Other functions communicating with
device have to be called with this handle.

Unlike function UcanInitHardware(), this function has an additional
parameter, which is also passed to the event callback function.
Additionally, the CAN channel is passed to the event callback
function.

Parameter:

 pUcanHandle_p: Pointer to the variable for the USBCAN Handle. This pointer must not
be NULL!

 bDeviceNr_p: Device number of the USB-CANmodul (0 – 254). The value
USBCAN_ANY_MODULE (= 255) let initialize the first allocated
USB-CANmodul.

 pfnEventCallbackEx_p: Pointer to an event callback function related to this USB-CANmodul.
This value can be NULL. In this case no callback function will be
called if corresponding events appear. This address can be same as
one that is already registered for other USB-CANmodul devices,
because the callback function passes the associated USBCAN
handle.

 pCallbackArg_p: User-specific parameter that is passed to the event callback function
as well. This value can be NULL.

Return: Error code of the function – refer to Table 25

The event callback function must have the following format (refer to section 4.3.7.2):

void PUBLIC AppEventCallbackEx (tUcanHandle UcanHandle_p, BYTE bEvent_p

 BYTE bChannel_p, void* pArg_p);

Example:

UCANRET bRet;

tUcanHandle UcanHandle;

 ...

 // initializes an USB-CANmodul without callback function

 bRet = UcanInitHardwareEx (&UcanHandle, USBCAN_ANY_MODULE, NULL, NULL);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 69

Function: UcanInitHardwareEx2

Syntax: UCANRET PUBLIC UcanInitHardwareEx2 (

 tUcanHandle* pUcanHandle_p,

 DWORD dwSerialNr_p,

 tCallbackFkt pfnEventCallbackEx_p,

 void* pCallbackArg_p);

Usability: DLL_INIT

Description: Initializes an USB-CANmodul as alternative to the functions
UcanInitHardware() and UcanInitHardwareEx(). Instead of passing
the device number the serial number is passed to identify the
USB-CANmodul.

Parameter:

 pUcanHandle_p: Pointer to the variable for the USB CAN Handle. This pointer must not
be NULL!

 dwSerialNr_p: Serial number of the USB-CANmodul (at the bar code sticker at the
device’s case). For the logical modules of an 8 or 16 channel device
the serial number must be calculated with the following formula:

 dwSerialNr = BarCodeNr * 1000 + n;

where n is the number of the logical module beginning with 1.

 pfnEventCallbackEx_p: Pointer to an event callback function related to this USB-CANmodul.
This value can be NULL. In this case no callback function will be
called if corresponding events appear. This address can be same as
one that is already registered for other USB-CANmodul devices,
because the callback function passes the associated USBCAN
handle.

 pCallbackArg_p: User-specific parameter that is passed to the event callback function
as well. This value can be NULL.

Return: Error code of the function – refer to Table 25

The event callback function must have the following format (refer to section 4.3.7.2):

void PUBLIC AppEventCallbackHandlerEx (tUcanHandle UcanHandle_p, BYTE bEvent_p

 BYTE bChannel_p, void* pArg_p);

Example:

#define APP_BARCODE_NR 123456

UCANRET bRet;

tUcanHandle aUcanHandle[4];

DWORD dwSerialNr;

DWORD dwLogDevice;

 ...

 for (dwLogDevice = 0; dwLogDevice <= 4; dwLogDevice++)

 {

 dwSerialNr = APP_BARCODE_NR * 1000 + (dwLogDevice + 1);

 // initializes an USB-CANmodul without callback function

 bRet = UcanInitHardwareEx2 (&aUcanHandle[dwLogDevice],

 dwSerialNr, NULL, NULL);

 ...

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 70

Function: UcanDeinitHardware

Syntax: UCANRET PUBLIC UcanDeinitHardware (tUcanHandle UcanHandle_p);

Usability: HW_INIT, CAN_INIT

Description: Shuts down an initialized USB-CANmodul that was initialized with
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware(). The software returns to the
state DLL_INIT. After the function call, the USB CAN handle is not
valid. That means, execution of the valid functions (see Table 4) for
HW_INIT and CAN_INIT is no longer possible.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

Return: Error code of the function – refer to Table 25

Note:

This function has to be called before closing the application, otherwise other applications are no longer
able to access this specific USB-CANmodul.

Function: UcanGetModuleTime

Syntax: UCANRET PUBLIC UcanGetModuleTime (tUcanHandle UcanHandle_p,

 DWORD* pdwTime_p);

Usability: HW_INIT, CAN_INIT

Description: This function reads the current time stamp from the device.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pdwTime_p: Pointer to a variable where the time stamp is to be stored to. This
parameter must not be NULL!

Return: Error code of the function – refer to Table 25

Note:

The execution of this function as well as the transfer of the time stamp needs run-time. In other words,
after this function has returned successfully, the time stamp will be out-dated. The accuracy of this
time stamp depends on many factors and is unpredictable on non-real-time operating systems.

The base time of the time stamp is 1 millisecond as long as the flag kUcanModeHighResTimer is not
set to the parameter m_bMode of structure tUcanInitCanParam passed to the function
UcanInitCanEx() or UcanInitCanEx2(). If the flag kUcanModeHighResTimer is set in parameter
m_bMode of structure tUcanInitCanParam then the time stamp returns in multiple of 100
microseconds.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 71

Function: UcanSetDeviceNr

Syntax: UCANRET PUBLIC UcanSetDeviceNr (tUcanHandle UcanHandle_p,

 BYTE bDeviceNr_p);

Usability: HW_INIT, CAN_INIT

Description: This function writes a new device number to the USB-CANmodul.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bDeviceNr_p: New device number. Valid values are 0 to 254.

Return: Error code of the function – refer to Table 25

Function: UcanInitCan

Syntax: UCANRET PUBLIC UcanInitCan (tUcanHandle UcanHandle_p,

 BYTE bBTR0_p, BYTE bBTR1_p,

 DWORD dwAMR_p, DWORD dwACR_p);

Usability: HW_INIT, only single CAN-channel devices

Description: Initializes the CAN interface of an USB-CANmodul. The software
changes into the state CAN_INIT. From this point, the functions in
section CAN_INIT can be called (refer to Table 12).

This API function is obsolete. We recommend to use the function
UcanInitCanEx() and/or UcanInitCanEx2().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bBTR0_p,
bBTR1_p:

Baud rate register 0 and 1 to select the CAN baud rate for a SJA1000
CAN controller (refer to section 4.3.4).

 dwAMR_p,
dwACR_p:

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 72

Function: UcanInitCanEx

Syntax: UCANRET PUBLIC UcanInitCanEx (tUcanHandle UcanHandle_p,

 tUcanInitCanParam* pInitCanParam_p);

Usability: HW_INIT, only single CAN-channel devices

Description: Initializes the CAN interface of an USB-CANmodul. The software
changes into the state CAN_INIT. From this point, the functions in
section CAN_INIT can be called (refer to Table 12).

This API function is an alternative function for UcanInitCan() and/or
UcanInitCanEx2().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pInitCanParam_p: Pointer to a variable of type tUcanInitCanParam containing all CAN
initialization parameters.

Return: Error code of the function – refer to Table 25

typedef struct

{

 DWORD m_dwSize;

 BYTE m_bMode;

 BYTE m_bBTR0;

 BYTE m_bBTR1;

 BYTE m_bOCR;

 DWORD m_dwAMR;

 DWORD m_dwACR;

 DWORD m_dwBaudrate;

 WORD m_wNrOfRxBufferEntries;

 WORD m_wNrOfTxBufferEntries;

}

tUcanInitCanParam;

Parameter:

 m_dwSize: Size of this structure in bytes. Always set it to the value returned by
sizeof(tUcanInitCanParam) before calling the function
UcanInitCanEx() or UcanInitCanEx2().

 m_bMode: The CAN mode containing flags affecting the behavior of the
transmission and reception of CAN messages (refer to Table 15).
These flags can be combined.

 m_bBTR0,
m_bBTR1:

Baud rate register 0 and 1 to select the CAN baud rate for a
SJA1000 CAN controller (refer to section 4.3.4).

These two parameters are obsolete (refer to following note).

 m_bOCR: This parameter is obsolete. Always set it to the pre-defined value
USBCAN_OCR_DEFAULT.

 m_dwAMR,
m_dwACR:

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

 m_dwBaudrate: Baud rate register to select the CAN baud rate for an
USB-CANmodul of third or fourth generation (refer to section 4.3.4).

 m_wNrOfRxBufferEntries,
m_wNrOfTxBufferEntries:

Number of entries in receive and transmit buffer within the DLL. Set
these parameters to zero if the DLL shall use the default buffer size
of 1024 entries.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 73

Note:

The configuration of the baud rate differs significantly between the older USB-CANmodul versions and
the all USB-CANmodul devices of third and fourth generation. If you need to support older hardware
versions as they are described in this manual, the standardized baud rate values for bBTR0 and
bBTR1 have to be used to specify the CAN baud rate (refer to section 4.3.4). Therefore, set
dwBaudrate to the pre-defined value USBCAN_BAUDEX_USE_BTR01. Otherwise set both bBTR0
and bBTR1 to zero and set the appropriate register value to dwBaudrate.

Table 15: Constants for selecting the CAN mode

Name Value Description

kUcanModeNormal 0x00 normal transmit- and receive mode

kUcanModeListenOnly 0x01
listen-only mode; transmitted CAN messages are not sent out via
CAN-bus. Received CAN-messages of remote nodes are not
acknowledged.

kUcanModeTxEcho 0x02
UcanReadCanMsg() and/or UcanReadCanMsgEx() also returns
transmitted messages as so-called “transmit echo” .

kUcanModeHighResTimer 0x08 The time stamp of CAN-message structure tCanMsgStruct is high-
resolution for received CAN messages. This means the value in
the member-variable m_dwTime has 100µs resolution (instead
1ms). An overrun of the 32-Bit value is reached every
4d:23h:18min:16.7296sec (instead 49d:17h:2min:47.295sec).

The resolution of returned value of API function
UcanGetModuleTime() is also changed with this configuration.

Function: UcanInitCanEx2

Syntax: UCANRET PUBLIC UcanInitCanEx2 (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tUcanInitCanParam* pInitCanParam_p);

Usability: HW_INIT

Description: Initializes the CAN interface of an USB-CANmodul. The software
changes into the state CAN_INIT. From this point, the functions in
section CAN_INIT can be called (refer to Table 12).

This API function is an alternative function for UcanInitCan() and/or
UcanInitCanEx().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pInitCanParam_p: Pointer to a variable of type tUcanInitCanParam containing all CAN
initialization parameters.

Return: Error code of the function – refer to Table 25

Example: refer to example on page 123.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 74

Function: UcanSetTxTimeout

Syntax: UCANRET PUBLIC UcanSetTxTimeout (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD dwTxTimeout_p);

Usability: CAN_INIT, only multi CAN-channel devices

Description: If this function is called with a timeout value greater than
0 milliseconds then firmware controls all transmit CAN messages by
this timeout value. If a CAN message cannot be sent during this
timeout (notified by reception of the acknowledge bit on CAN bus)
then firmware changes to a special state whereas all further transmit
CAN messages for the specified channel will be deleted automatically.
At each deleted transmit CAN message firmware sets the new CAN
driver state USBCAN_CANERR_TXMSGLOST. When the CAN
message could be sent later then firmware leaves this special state.

This feature is to prevent that transmit CAN messages of a channel
blocks transmit CAN messages of the other channel caused by not
connected remote CAN device or any physical problems on CAN bus.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 dwTxTimeout_p: Transmission Timeout in milliseconds. The value 0 switches off the
timeout control.

Return: Error code of the function – refer to Table 25

Function: UcanResetCan

Syntax: UCANRET PUBLIC UcanResetCan (tUcanHandle UcanHandle_p);

Usability: HW_INIT, CAN_INIT, only for single CAN-channel devices

Description: Resets the CAN controller in the USB-CANmodul and erases the CAN
message buffer. This function needs to be called if a BUSOFF event
occurred. The CAN status error (readable via UcanGetStatus() or
UcanGetStatusEx()) is also cleared.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 75

Function: UcanResetCanEx

Syntax: UCANRET PUBLIC UcanResetCanEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD dwResetFlags_p);

Usability: HW_INIT, CAN_INIT

Description: Resets several features of a separate CAN channel of an
USB-CANmodul. This API function is an extended version of function
UcanResetCan().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 dwResetFlags_p: The flags of this parameter specify which components are to be reset
(refer to Table 16 and Table 17). The logical combination of different
flags is possible.

Return: Error code of the function – refer to Table 25

Table 16: Constants for Reset Flags

Name Value Description

USBCAN_RESET_ALL 0x00000000
Reset all components. However, the firmware is
not reset completely.

USBCAN_RESET_NO_STATUS 0x00000001 Skip reset of the CAN error status.

USBCAN_RESET_NO_CANCTRL 0x00000002 Skip reset of the CAN controller.

USBCAN_RESET_NO_TXCOUNTER 0x00000004 Skip reset of the transmit message counter.

USBCAN_RESET_NO_RXCOUNTER 0x00000008 Skip reset of the receive message counter.

USBCAN_RESET_NO_TXBUFFER_CH 0x00000010
Skip reset of the transmit buffers of a specific
CAN-channel (CAN-channel is specified by
parameter bChannel_p).

USBCAN_RESET_NO_TXBUFFER_DLL 0x00000020
Skip reset of the transmit buffer for both CAN-
channels within the DLL.

USBCAN_RESET_NO_TXBUFFER_FW 0x00000080
Skip reset of the transmit buffers of both CAN-
channels within the device’s firmware.

USBCAN_RESET_NO_RXBUFFER_CH 0x00000100
Skip reset of the receive buffers of a specific CAN-
channel (CAN-channel is specified by parameter
bChannel_p).

USBCAN_RESET_NO_RXBUFFER_DLL 0x00000200
Skip reset of both receive message counters
within the DLL.

USBCAN_RESET_NO_RXBUFFER_SYS 0x00000400
Skip reset of the receive buffer within the kernel
mode driver.

USBCAN_RESET_NO_RXBUFFER_FW 0x00000800
Skip reset of receive buffer within the device’s
firmware.

USBCAN_RESET_FIRMWARE 0xFFFFFFFF Complete reset of the device firmware. The device
will be automatically disconnected from the USB
interface and reconnected again.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 76

Table 17: Constants as pre-defined combinations for Reset Flags

Name Value Description

USBCAN_RESET_ONLY_STATUS 0x0000FFFE Reset of the CAN error status only.

USBCAN_RESET_ONLY_CANCTRL 0x0000FFFD
Only resets the CAN controller of the
USB-CANmodul.

USBCAN_RESET_ONLY_RXBUFFER_FW 0x0000F7FF
Only resets the receive buffer within the
firmware of the USB-CANmodul.

USBCAN_RESET_ONLY_TXBUFFER_FW 0x0000FF7F
Only resets the transmit buffer within the
firmware of the USB-CANmodul.

USBCAN_RESET_ONLY_RXCHANNEL_BUFF 0x0000FEFF
Reset of the receive buffer of only one CAN-
channel.

USBCAN_RESET_ONLY_TXCHANNEL_BUFF 0x0000FFEF
Reset of the transmit buffer of only one
CAN-cannel.

USBCAN_RESET_ONLY_RX_BUFF 0x0000F0F7
Reset of the receive buffers in all software
parts and reset of the receive message
counter.

USBCAN_RESET_ONLY_TX_BUFF 0x0000FF0B
Reset of the transmit buffers in all software
parts and reset of the transmit message
counter.

USBCAN_RESET_ONLY_ALL_BUFF 0x0000F003

Reset off all message buffers (receive and
transmit buffers) in all software parts and
reset of the reception and transmit message
counters.

USBCAN_RESET_ONLY_ALL_COUNTER 0x0000FFF3 Reset of all reception and transmit counters.

Important:

If the constants USBCAN_RESET_NO_... must be combined, a logical OR has to be used.

Example:

 dwFalgs = USBCAN_RESET_NO_COUNTER_ALL | USBCAN_RESET_NO_BUFFER_ALL;

If the constants USBCAN_RESET_ONLY_... must be combined, a logical AND has to be used.

Example:

 dwFalgs = USBCAN_RESET_ONLY_RX_BUFF & USBCAN_RESET_ONLY_STATUS;

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 77

Function: UcanDeinitCan

Syntax: UCANRET PUBLIC UcanDeinitCan (tUcanHandle UcanHandle_p);

Usability: CAN_INIT, only single CAN-channel devices

Description: Shuts down the CAN interface of an USB-CANmodul. The software
changes back to the state HW_INIT.

After calling this function, all CAN messages left in receive buffer of
the firmware are ignored and not transferred to the PC. These CAN
messages are lost.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

Return: Error code of the function – refer to Table 25

Function: UcanDeinitCanEx

Syntax: UCANRET PUBLIC UcanDeinitCanEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p);

Usability: CAN_INIT

Description: Shuts down the CAN interface of an USB-CANmodul. The software
changes back to the state HW_INIT.

After calling this function, all CAN messages left in receive buffer of
the firmware are ignored and not transferred to the PC. These CAN
messages are lost.

This API function is an extended function to be used for multi-channel
devices.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 78

Function: UcanGetHardwareInfo

Syntax: UCANRET PUBLIC UcanGetHardwareInfo (tUcanHandle UcanHandle_p,

 tUcanHardwareInfo* pHwInfo_p);

Usability: HW_INIT, CAN_INIT

Description: This function returns the hardware information of an USB-CANmodul.
This function is especially useful if an USB-CANmodul has been
initialized with the device number USBCAN_ANY_MODULE.
Afterwards, the hardware information contains the device number of
the initialized USB-CANmodul.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pHwInfo_p: Pointer to the structure tUcanHardwareInfo containing the hardware
information (see description below). This pointer must not be NULL.

Return: Error code of the function – refer to Table 25

typedef struct

{

 BYTE m_bDeviceNr;

 tUcanHandle m_UcanHandle;

 DWORD m_dwReserved;

 BYTE m_bBTR0;

 BYTE m_bBTR1;

 BYTE m_bOCR;

 DWORD m_dwAMR;

 DWORD m_dwACR;

 BYTE m_bMode;

 DWORD m_dwSerialNr;

}

tUcanHardwareInfo;

Parameter:

 m_bDeviceNr: Device number of the USB-CANmodul device.

 m_UcanHandle: USBCAN handle returned by UcanInitHardware(),
UcanInitHardwareEx() or UcanInitHardwareEx2() as well as
UcanEnumerateHardware().

 m_dwReserved: Reserved

 m_bBTR0,
m_bBTR1:

Baud rate register 0 and 1 to select the CAN baud rate for a
SJA1000 CAN controller (refer to section 4.3.4).

 m_bOCR: This parameter is obsolete.

 m_dwAMR,
m_dwACR

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

 m_bMode: The CAN mode containing flags affecting the behavior of the
transmission and reception of CAN messages (refer to Table 15).
These flags can be combined.

 m_dwSerialNr: Serial number of the USB-CANmodul (at the bar code sticker at the
device’s case).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 79

Example:

UCANRET bRet;

tUcanHandle UcanHandle;

tUcanHardwareInfo HwInfo;

_TCHAR szDeviceNr[24];

 ...

 // initialize USB-CANmodul

 bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MODULE, NULL);

 // no error?

 if (bRet == USBCAN_SUCCESSFUL)

 {

 // get hardware information

 UcanGetHardwareInfo (UcanHandle, &HwInfo);

 // change the device number into a string

 _stprintf (szDeviceNr, _T(„device number = %d“),

 HwInfo.m_bDeviceNr);

 ...

 }

 ...

Function: UcanGetHardwareInfoEx2

Syntax: UCANRET PUBLIC UcanGetHardwareInfoEx2 (tUcanHandle UcanHandle_p,

 tUcanHardwareInfoEx* pHwInfoEx_p,

 tUcanChannelInfo* pCanInfoCh0_p,

 tUcanChannelInfo* pCanInfoCh1_p);

Usability: HW_INIT, CAN_INIT

Description: This function returns the extended hardware information of an
USB-CANmodul. The hardware information of each CAN-channel is
returned separately.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information (see description below). This pointer must not
be NULL.

 pCanInfoCh0_p,
pCanInfoCh1_p:

Pointers to information structure used for CAN channel 0 and 1.
These parameters may be set to NULL.

Return: Error code of the function – refer to Table 25

typedef struct

{

 DWORD m_dwSize;

 tUcanHandle m_UcanHandle;

 BYTE m_bDeviceNr;

 DWORD m_dwSerialNr;

 DWORD m_dwFwVersionEx;

 DWORD m_dwReserved;

 DWORD m_dwProductCode;

}

tUcanHardwareInfoEx;

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 80

Parameter:

 m_dwSize: Size of this structure in bytes. Always set it to the value returned by
sizeof(tUcanHardwareInfoEx) before calling the function
UcanGetHardwareInfoEx2().

 m_UcanHandle: USBCAN handle returned by UcanInitHardware(),
UcanInitHardwareEx() or UcanInitHardwareEx2() as well as
UcanEnumerateHardware().

 m_bDeviceNr: Device number of the USB-CANmodul device.

 m_dwSerialNr: Serial number of the USB-CANmodul (at the bar code sticker at the
device’s case).

 m_dwFwVersionEx: Version of the firmware within the USB-CANmodul (refer to
UcanGetFwVersion() for the format).

 m_dwReserved: Reserved

 m_dwProductCode: Type of the hardware (refer to Table 18)

Typedef struct

{

 DWORD m_dwSize;

 BYTE m_bMode;

 BYTE m_bBTR0;

 BYTE m_bBTR1;

 BYTE m_bOCR;

 DWORD m_dwAMR;

 DWORD m_dwACR;

 DWORD m_dwBaudrate;

 BOOL m_fCanIsInit;

 WORD m_wCanStatus;

}

tUcanChannelInfo;

Parameter:

 m_dwSize: Size of this structure in bytes. Always set it to the value returned by
sizeof(tUcanChannelInfo) before calling the function
UcanGetHardwareInfoEx2().

 m_bMode: The CAN mode containing flags affecting the behavior of the
transmission and reception of CAN messages (refer to Table 15).
These flags can be combined.

 m_bBTR0,
m_bBTR1:

Baud rate register 0 and 1 to select the CAN baud rate for a
SJA1000 CAN controller (refer to section 4.3.4).

 m_bOCR: This parameter is obsolete.

 m_dwAMR,
m_dwACR:

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

 m_dwBaudrate: Baud rate register to select the CAN baud rate for an
USB-CANmodul of third or fourth generation (refer to section 4.3.4).

 m_fCanIsInit: If set to non-zero then the CAN interface of the USB-CANmodul is
initialized by using the function UcanInitCan(), UcanInitCanEx() or
UcanInitCanEx2().

 m_wCanStatus: Last received CAN state (refer to UcanGetStatus() or
UcanGetStatusEx()).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 81

The 32-Bit value in m_dwProductCode of structure tUcanHardwareInfoEx specifies the Hardware-
Type of the USB-CANmodul with the lower 16 bits. Table 18 lists all possible values:

Table 18: Constants for Product-Code / Hardware-Type

Name Value Description

USBCAN_PRODCODE_PID_GW001 0x1100 USB-CANmodul 1) of first generation (G1)

USBCAN_PRODCODE_PID_GW002 0x1102 USB-CANmodul 1) of second generation (G2)

USBCAN_PRODCODE_PID_MULTIPORT 0x1103
Multiport CAN-to USB 1) of third generation (G3)
including 16 CAN channels

USBCAN_PRODCODE_PID_BASIC 0x1104
USB-CANmodul1 1) of third generation (G3)
including one CAN channel

USBCAN_PRODCODE_PID_ADVANCED 0x1105
USB-CANmodul2 1) of third generation (G3)
including 2 CAN channels

USBCAN_PRODCODE_PID_USBCAN8 0x1107
USB-CANmodul8 1) of third generation (G3)
including 8 CAN channels

USBCAN_PRODCODE_PID_USBCAN16 0x1109
USB-CANmodul16 1) of third generation (G3)
including 16 CAN channels

USBCAN_PRODCODE_PID_RESERVED3 0x1110 Reserved 1)

USBCAN_PRODCODE_PID_ADVANCED_G4 0x1121
USB-CANmodul2 of fourth generation (G4)
including 2 CAN channels

USBCAN_PRODCODE_PID_BASIC_G4 0x1122
USB-CANmodul1 of fourth generation (G4)
including one CAN channel

USBCAN_PRODCODE_PID_RESERVED1 0x1144 Reserved 1)

USBCAN_PRODCODE_PID_RESERVED2 0x1145 Reserved 1)

USBCAN_PRODCODE_PID_RESERVED4 0x1162 Reserved 1)

1) Not documented within the scope of this document.

Use the following macros are for getting information about the support of several new features:

Macro: USBCAN_CHECK_SUPPORT_CYCLIC_MSG

Syntax: USBCAN_CHECK_SUPPORT_CYCLIC_MSG(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports the
automatic transmission of cyclic CAN messages.

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 82

Macro: USBCAN_CHECK_SUPPORT_TWO_CHANNEL

Syntax: USBCAN_CHECK_SUPPORT_TWO_CHANNEL(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports two
CAN-channels.

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_SUPPORT_TERM_RESISTOR

Syntax: USBCAN_CHECK_SUPPORT_TERM_RESISTOR(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports to
read back the state of the termination resistor (refer to section 2.3).

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_SUPPORT_USER_PORT

Syntax: USBCAN_CHECK_SUPPORT_USER_PORT(pHwInfoEx_p)

Description: This Macro checks whether the logical USB CANmodul supports a
programmable expansion port (refer to section 2.5).

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 83

Macro: USBCAN_CHECK_SUPPORT_RBUSER_PORT

Syntax: USBCAN_CHECK_SUPPORT_RBUSER_PORT(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports a
programmable expansion port (refer to section 2.5) including the
storing of the last output configuration to a non-volatile memory. After
next power-on this configuration will be automatically set to the
expansion port.

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_SUPPORT_RBCAN_PORT

Syntax: USBCAN_CHECK_SUPPORT_RBCAN_PORT(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports a
programmable CAN port (for low-speed CAN transceivers – refer to
section 2.4) including the storing of the last output configuration to a
non-volatile memory. After next power-on this configuration will be
automatically set to the CAN port.

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_SUPPORT_UCANNET

Syntax: USBCAN_CHECK_SUPPORT_UCANNET(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul supports the
usage of the network driver (refer to section 3.9).

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 84

Macro: USBCAN_CHECK_IS_SYSWORXX

Syntax: USBCAN_CHECK_IS_SYSWORXX(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul belongs to the
sysWORXX series of USB-CANmodul (at least third generation - G3).

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_IS_G1
USBCAN_CHECK_IS_G2
USBCAN_CHECK_IS_G3
USBCAN_CHECK_IS_G4

Syntax: USBCAN_CHECK_IS_G1(pHwInfoEx_p)

USBCAN_CHECK_IS_G2(pHwInfoEx_p)

USBCAN_CHECK_IS_G3(pHwInfoEx_p)

USBCAN_CHECK_IS_G4(pHwInfoEx_p)

Description: This Macro checks whether the logical USB-CANmodul belongs to the
first, second, third or fourth generation of USB-CANmodul (refer to
Table 18).

Parameter:

 pHwInfoEx_p: Pointer to the structure tUcanHardwareInfoEx containing the
hardware information returned by function
UcanGetHardwareInfoEx2(). This pointer must not be NULL.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 85

Example:

UCANRET bRet;

tUcanHandle UcanHandle;

tUcanHardwareInfoEx HwInfoEx;

 ...

 // init USB-CANmodul

 bRet = UcanInitHardware (&UcanHandle, USBCAN_ANY_MODULE, NULL);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 // prepare the hardware info structure

 memset (&HwInfoEx, 0, sizeof (HwInfoEx));

 HwInfoEx.m_dwSize = sizeof (HwInfoEx);

 // get the extended hardware information

 bRet = UcanGetHardwareInfoEx2 (UcanHandle, &HwInfoEx, NULL, NULL);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 TRACE1 ("product code = 0x%04X\n",

 HwInfoEx->m_dwProductCode & USBCAN_PRODCODE_MASK_PID);

 // check whether two CAN-channels are supported

 if (USBCAN_CHECK_SUPPORT_TWO_CHANNEL (&HwInfoEx))

 {

 ...

 }

 ...

 }

 ...

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 86

Function: UcanGetMsgCountInfo

Syntax: UCANRET PUBLIC UcanGetMsgCountInfo (tUcanHandle UcanHandle_p,

 tUcanMsgCountInfo* pMsgCountInfo_p);

Usability: CAN_INIT, only single-channel devices

Description: Reads the counters for transmitted and received CAN messages from
the device.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pMsgCountInfo_p: Pointer to a structure of type tUcanMsgCountInfo where the counters
are to be stored to (see below). This pointer must not be NULL.

Return: Error code of the function – refer to Table 25

typedef struct

{

 WORD m_wSentMsgCount;

 WORD m_wRecvdMsgCount;

} tUcanMsgCountInfo;

Parameter:

 m_wSentMsgCount: Number of transmitted CAN messages.

 m_wRecvdMsgCount: Number of received CAN messages.

Function: UcanGetMsgCountInfoEx

Syntax: UCANRET PUBLIC UcanGetMsgCountInfoEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tUcanMsgCountInfo* pMsgCountInfo_p);

Usability: CAN_INIT

Description: Reads the counters for transmitted and received CAN messages from
the device. This API function is an extended version of function
UcanGetMsgCountInfo().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pMsgCountInfo_p: Pointer to a structure of type tUcanMsgCountInfo where the counters
are to be stored to (refer to function UcanGetMsgCountInfo()). This
pointer must not be NULL.

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 87

Function: UcanGetStatus

Syntax: UCANRET PUBLIC UcanGetStatus (tUcanHandle UcanHandle_p,

 tStatusStruct* pStatus_p);

Usability: HW_INIT, CAN_INIT, only single-channel devices

Description: This function returns the current error status from the
USB-CANmodul. The error status must be cleared by calling the
function UcanResetCan() or UcanResetCanEx().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pStatus_p: Pointer to a structure of type tStatusStruct where the error status is to
be stored to (see below). This pointer must not be NULL.

Return: Error code of the function – refer to Table 25

If an error occurred on the USB-CANmodul, the red status LED starts blinking and a status notification
is sent to the PC. If an event callback function has been passed to the function UcanInitHardware(),
UcanInitHardwareEx() or UcanInitHardwareEx2(), this event callback function is called passing the
event USBCAN_EVENT_STATUS. Indirectly call the function UcanGetStatus() or UcanGetStatusEx()
to receive the error status.

typedef struct

{

 WORD m_wCanStatus;

 WORD m_wUsbStatus;

} tStatusStruct;

Parameter:

 m_wCanStatus: CAN error status (refer to Table 19). More than one error status bit
may be set.

 m_wUsbStatus: General device error status (refer to Table 20). More than one error
status bit may be set.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 88

Table 19: Constants for CAN error status

Name Value Description

USBCAN_CANERR_OK 0x0000 No error occurred.

USBCAN_CANERR_XMTFULL 0x0001 Transmit buffer in CAN controller is overrun.

USBCAN_CANERR_OVERRUN 0x0002 Receive buffer in CAN controller is overrun.

USBCAN_CANERR_BUSLIGHT 0x0004
Error limit 1 in CAN controller exceeded. The CAN
controller is in state “Warning limit”.

USBCAN_CANERR_BUSHEAVY 0x0008
Error limit 2 in CAN controller exceeded. The CAN
controller is in state “Error Passive”.

USBCAN_CANERR_BUSOFF 0x0010 CAN controller is in BUSOFF state.

USBCAN_CANERR_QOVERRUN 0x0040 Receive buffer in module’s firmware is overrun.

USBCAN_CANERR_QXMTFULL 0x0080 Transmit buffer in module’s firmware is overrun.

USBCAN_CANERR_REGTEST 0x0100 Obsolete

USBCAN_CANERR_MEMTEST 0x0200 Obsolete

USBCAN_CANERR_TXMSGLOST 0x0400
A transmit CAN message was deleted automatically by the
firmware because transmission timeout run over (refer to
function UcanSetTxTimeout()).

Table 20: Constants for general error status

Name Value Description

USBCAN_USBERR_STATUS_TIMEOUT 0x2000
The USB-CANmodul has been reset because
the status channel was not polled each second.

USBCAN_USBERR_WATCHDOG_TIMEOUT 0x4000
The USB-CANmodul has been reset because
the internal watchdog was not triggered by the
firmware.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 89

Function: UcanGetStatusEx

Syntax: UCANRET PUBLIC UcanGetStatusEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tStatusStruct* pStatus_p);

Usability: HW_INIT, CAN_INIT

Description: This function returns the current error status of a specific CAN-
channel from the USB-CANmodul. It is an extended version of
function UcanGetStatus().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pStatus_p: Pointer to a structure of type tStatusStruct where the error status is to
be stored to (refer to UcanGetStatus()). This pointer must not be
NULL.

Return: Error code of the function – refer to Table 25

Function: UcanSetBaudrate

Syntax: UCANRET PUBLIC UcanSetBaudrate (tUcanHandle UcanHandle_p,

 BYTE bBTR0_p, BYTE bBTR1_p);

Usability: CAN_INIT, only single-channel devices

Description: Changes the baud rate configuration of the USB-CANmodul.

This API function is obsolete. We recommend to use the function
UcanSetBaudrateEx().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bBTR0_p,
bBTR1_p:

Baud rate register 0 and 1 to select the CAN baud rate for a SJA1000
CAN controller (refer to section 4.3.4).

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 90

Function: UcanSetBaudrateEx

Syntax: UCANRET PUBLIC UcanSetBaudrateEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 BYTE bBTR0_p, BYTE bBTR1_p,

 DWORD dwBaudrate_p);

Usability: CAN_INIT

Description: Changes the baud rate configuration of a specific CAN-channel of the
USB-CANmodul.

This API function is an extended version of function
UcanSetBaudrate().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 bBTR0_p,
bBTR1_p:

Baud rate register 0 and 1 to select the CAN baud rate for a SJA1000
CAN controller (refer to section 4.3.4).

 dwBaudrate_p: Baud rate register for all USB-CANmodul devices of third or fourth
generation (refer to section 4.3.4).

Return: Error code of the function – refer to Table 25

Note:

The configuration of the baud rate differs significantly between the older USB-CANmodul versions and
the all USB-CANmodul devices of third and fourth generation. If you need to support older hardware
versions as they are described in this manual, the standardized baud rate values for bBTR0 and
bBTR1 have to be used to specify the CAN baud rate (refer to section 4.3.4). Therefore, set
dwBaudrate to the pre-defined value USBCAN_BAUDEX_USE_BTR01. Otherwise set both bBTR0
and bBTR1 to zero and set the appropriate register value to dwBaudrate.

Function: UcanSetAcceptance

Syntax: UCANRET PUBLIC UcanSetAcceptance (tUcanHandle UcanHandle_p,

 DWORD dwAMR_p, DWORD dwACR_p);

Usability: CAN_INIT, only single-channel devices

Description: Changes the acceptance filter registers of the USB-CANmodul for
receiving CAN messages.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 dwAMR_p,
dwACR_p:

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 91

Function: UcanSetAcceptanceEx

Syntax: UCANRET PUBLIC UcanSetAcceptanceEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD dwAMR_p, DWORD dwACR_p);

Usability: CAN_INIT

Description: Changes the acceptance filter registers of a specific CAN-channel of
the USB-CANmodul for receiving CAN messages.

This API function is an extended version of function
UcanSetAcceptance().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 dwAMR_p,
dwACR_p:

Acceptance Mask and Code Register to configure the hardware filter
for receiving CAN messages (refer to section 4.3.5).

Return: Error code of the function – refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 92

Function: UcanReadCanMsg

Syntax: UCANRET PUBLIC UcanReadCanMsg (tUcanHandle UcanHandle_p,

 tCanMsgStruct* pCanMsg_p);

Usability: CAN_INIT, only single-channel devices

Description: Reads a CAN message from the receive buffer. This function also
reads back transmitted CAN messages as long as the CAN mode flag
kUcanModeTxEcho was enabled at initialization time (refer to
UcanInitCanEx() or UcanInitCanEx2()).

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pCanMsg_p: Pointer to the CAN message structure (see below). This pointer must
not be NULL.

Return: Error code of the function

If the buffer contains no CAN messages, this function returns the
warning USBCAN_WARN_NODATA. If a buffer overrun occurred, this
function returns a valid CAN message and one of the warnings
USBCAN_WARN_DLL_RXOVERRUN,
USBCAN_WARN_SYS_RXOVERRUN or
USBCAN_WARN_FW_RXOVERRUN.

Refer to Table 25 for detailed information.

typedef struct

{

 DWORD m_dwID;

 BYTE m_bFF;

 BYTE m_bDLC;

 BYTE m_bData[8];

 DWORD m_dwTime;

}

tCanMsgStruct;

Parameter:

 m_dwID: CAN identifier (CAN-ID)

 m_bFF: CAN frame format (refer to Table 21)

 m_bDLC: CAN data length code (DLC)

 m_bData[8]: CAN data (up to 8 bytes)

 m_dwTime: Time stamp of reception (or transmission for echo).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 93

The CAN frame format is a bit mask that specifies the format of the CAN message. The following table
lists all valid values:

Table 21: Constants for the CAN frame format

Name Value Description

USBCAN_MSG_FF_STD 0x00 CAN2.0A message with 11-bit CAN-ID

USBCAN_MSG_FF_ECHO 0x20
Transmit echo; Is only received if mode kUcanModeTxEcho was
enabled at initialization time (refer to UcanInitCanEx() or
UcanInitCanEx2()).

USBCAN_MSG_FF_RTR 0x40 CAN Remote Frame (all bytes are ignored)

USBCAN_MSG_FF_EXT 0x80 CAN2.0B message with 29-bit CAN-ID

Note:

In order to avoid receive buffer overflows it is recommended to call function UcanReadCanMsg() or
UcanReadCanMsgEx() cyclically (e.g. in a loop) as long as a valid CAN message was received.

A valid CAN message was read, even if a warning was returned (except USBCAN_WARN_NODATA).
You can use the macro USBCAN_CHECK_VALID_RXCANMSG() for checking whether a valid CAN
message was stored to the CAN message structure (like shown in upper example).

Example:

tUcanHandle UcanHandle;

tCabMsgStruct CanMsg;

UCANRET bRet;

 ...

 while (1)

 {

 // read CAN-message

 bRet = UcanReadCanMsg (UcanHandle, &CanMsg);

 // valid CAN message? print CAN-message

 if (USBCAN_CHECK_VALID_RXCANMSG (bRet))

 {

 AppPrintCanMsg (&CanMsg);

 if (USBCAN_CHECK_WARNING (bRet))

 {

 AppPrintWarning (bRet);

 }

 }

 // error occurred? print error

 else if (USBCAN_CHECK_ERROR (bRet))

 {

 AppPrintError (bRet);

 break;

 }

 else

 {

 break;

 }

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 94

Function: UcanReadCanMsgEx

Syntax: UCANRET PUBLIC UcanReadCanMsgEx (tUcanHandle UcanHandle_p,

 BYTE* pbChannel_p,

 tCanMsgStruct* pCanMsg_p,

 DWORD* pdwCount_p);

Usability: CAN_INIT

Description: Reads a CAN message from the receive buffer of a specific CAN-
channel. This function is an extended version of function
UcanReadCanMsg() and also reads back transmitted CAN messages
as long as the CAN mode flag kUcanModeTxEcho was enabled at
initialization time (refer to UcanInitCanEx() or UcanInitCanEx2()).

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pbChannel_p: Pointer to a variable of type BYTE.

Input: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1
USBCAN_CHANNEL_ANY for CAN channel 0 or 1

Output: CAN channel, the CAN message was read from

 pCanMsg_p: Pointer to the structure tCanMsgStruct. This pointer must not be
NULL.

 pdwCount_p: Pointer to a variable of type DWORD

Input: Maximum number of CAN messages to be read.

Output: Number of CAN messages that were read from the receive
buffer.

If this parameter is set to NULL, only one CAN message is read from
the receive buffer.

Return: Error code of the function

If the buffer contains no CAN messages, this function returns the
warning USBCAN_WARN_NODATA. If a buffer overrun occurred, this
function returns a valid CAN message and one of the warnings
USBCAN_WARN_DLL_RXOVERRUN,
USBCAN_WARN_SYS_RXOVERRUN or
USBCAN_WARN_FW_RXOVERRUN.

Refer to Table 25 for detailed information.

Note:

In order to avoid receive buffer overflows it is recommended to call function UcanReadCanMsg() or
UcanReadCanMsgEx() cyclically (e.g. in a loop) as long as a valid CAN message was received.

A valid CAN message was read, even if a warning was returned (except USBCAN_WARN_NODATA).
You can use the macro USBCAN_CHECK_VALID_RXCANMSG() for checking whether a valid CAN
message was stored to the CAN message structure (like shown in upper example).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 95

Example:

tUcanHandle UcanHandle;

tCabMsgStruct aRxCanMsg[16];

UCANRET bRet;

BYTE bChannel;

DWORD dwCount;

 while (1)

 {

 // read up to 16 CAN messages

 bChannel = USBCAN_CHANNEL_ANY;

 dwCount = sizeof (aRxCanMsg) / sizeof (aRxCanMsg[0]);

 bRet = UcanReadCanMsgEx (UcanHandle, &bChannel, &aRxCanMsg, &dwCount);

 // valid CAN message? print CAN messages

 if (USBCAN_CHECK_VALID_RXMSG (bRet))

 {

 AppPrintCanMessages (&aRxCanMsg[0], dwCount);

 if (USBCAN_CHECK_WARNING (bRet))

 AppPrintWarning (bRet);

 }

 // error occurred? print error

 else if (USBCAN_CHECK_ERROR (bRet))

 {

 AppPrintError (bRet);

 break;

 }

 else

 {

 break;

 }

 }

 ...

Function: UcanWriteCanMsg

Syntax: UCANRET PUBLIC UcanWriteCanMsg (tUcanHandle UcanHandle_p,

 tCanMsgStruct* pCanMsg_p);

Usability: CAN_INIT, only single-channel devices

Description: Transmits a CAN message through the USB-CANmodul.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pCanMsg_p: Pointer to the CAN message structure (refer to UcanReadCanMsg()).
This pointer must not be NULL.

The meaning of CAN frame format is given in Table 21. For
transmission of CAN messages, the bit USBCAN_MSG_FF_ECHO
has no meaning.

For transmission of CAN messages, the parameter m_dwTime of
structure tCanMsgStruct has no meaning.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 96

Function: UcanWriteCanMsgEx

Syntax: UCANRET PUBLIC UcanWriteCanMsgEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tCanMsgStruct* pCanMsg_p,

 DWORD* pdwCount_p);

Usability: CAN_INIT

Description: Transmits a CAN message through a specific CAN-channel of the
USB-CANmodul.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pCanMsg_p: Pointer to the CAN message structure (refer to UcanReadCanMsg()).
This pointer must not be NULL.

The meaning of CAN frame format is given in Table 21. For
transmission of CAN messages, the bit USBCAN_MSG_FF_ECHO
has no meaning.

For transmission of CAN messages, the parameter m_dwTime of
structure tCanMsgStruct has no meaning.

 pdwCount_p: Pointer to a variable of type DWORD

Input: Number of CAN messages to be written to the transmitted
buffer.

Output: Number of CAN messages that were successfully written to
the transmit buffer.

If this parameter is set to NULL, only one CAN message is written to
the transmit buffer.

Return: Error code of the function - refer to Table 25

Note:

If this function is called for transmitting more than one CAN messages, then the return code has also to
be checked for the warning USBCAN_WARN_TXLIMIT. Receiving this return value only a part of the
CAN messages was stored to the transmit buffer in USBCAN32.DLL. The variable which is referenced
by the parameter pdwCount_p gets the number of successfully stored CAN messages. The part which
was not stored to the transmit buffer has to be tried to be transmitted again by the application. Otherwise,
they will be lost.

You can use the macro USBCAN_CHECK_TX_NOTALL() for checking the return value whether some
CAN messages could not be copied to the transmit buffer (see following example). The macro
USBCAN_CHECK_TX_SUCCESS() checks whether all CAN messages could be stored to the transmit
buffer while the macro USBCAN_CHECK_TX_OK() checks whether one CAN message at least was
stored to the transmit buffer.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 97

Example:

tUcanHandle UcanHandle;

tCabMsgStruct TxCanMsg[10];

UCANRET bRet;

DWORD dwCount;

 ...

 // transmit up to 10 CAN messages

 dwCount = sizeof (TxCanMsg) / sizeof (tCabMsgStruct);

 AppGetTxMessages (&TxCanMsg, &dwCount);

 bRet = UcanWriteCanMsgEx (UcanHandle, USBCAN_CHANNEL_CH0,

 &TxCanMsg, &dwCount);

 // Check whether no error occurred

 if (USBCAN_CHECK_TX_OK (bRet))

 {

 // check whether a part of the array was not sent

 if (USBCAN_CHECK_TX_NOTALL (bRet))

 {

 // e.g. release the number of CAN messages from application

 AppReleaseTxMessages (dwCount);

 ...

 }

 // check whether there was a warning

 if (USBCAN_CHECK_WARNING (bRet))

 {

 AppPrintWarning (bRet);

 }

 }

 // check wheher an error occurred

 else if (USBCAN_CHECK_ERROR (bRet))

 {

 AppPrintError (bRet);

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 98

Function: UcanGetMsgPending

Syntax: UCANRET PUBLIC UcanGetMsgPending (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD dwFlags_p,

 DWORD* pdwCount_p);

Usability: CAN_INIT

Description: This function returns the number of the CAN messages which are
currently stored to the buffers within the several software parts. The
parameter dwFlags_p specifies which buffers should be checked.
Should the function check more than one buffer, then the number of
CAN messages will be added before writing to the variable which is
referenced by the parameter pdwCount_p.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1
USBCAN_CHANNEL_ANY for both CAN channels

 dwFlags_p: Specifies which buffers should be checked (refer to Table 22). The
several flags can be combined using the OR-operation. In that case the
number of CAN messages will be added.

 pdwCount_p: Pointer to a variable of type DWORD receiving the number of pending
CAN messages. This parameter must not be NULL.

Return: Error code of the function - refer to Table 25

Table 22: Constants for the flags parameter in function UcanGetMsgPending()

Name Value Description

USBCAN_PENDING_FLAG_RX_DLL 0x00000001
Checks the number of messages of receive buffer
within the DLL.

USBCAN_PENDING_FLAG_RX_FW 0x00000004
Checks the number of messages of receive buffer
within module’s firmware.

USBCAN_PENDING_FLAG_TX_DLL 0x00000010
Checks the number of messages of transmit buffer
within the DLL.

USBCAN_PENDING_FLAG_TX_FW 0x00000040
Checks the number of messages of transmit buffer
within module’s firmware.

Note:

After function UcanGetMsgPending() returned to the application, the number of the CAN messages can
already be changed within the several software parts. When the application calls this function too often,
the performance can be decreased.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 99

Function: UcanGetCanErrorCounter

Syntax: UCANRET PUBLIC UcanGetCanErrorCounter (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD* pdwTxCount_p, DWORD* pdwRxCount_p);

Usability: CAN_INIT

Description: Returns the current error counters from CAN controller. This values
are directly read from the hardware.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pdwTxCount_p,
pdwRxCount_p:

Pointer to a variable of type DWORD to receive the current state of
transmit or receive error counter. These parameters must not be NULL.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 100

4.3.2.2 API Functions for automatic transmission

The following API functions are used to automatic transmission of cyclic CAN messages by the
module’s firmware. This results a better cycle time as a Windows PC application could realize.

Note:

The accuracy of the cycle time also depends on the configured CAN baud rate. E.g. a jitter of approx.
10 milliseconds is a result of using a CAN baud rate of 10 kbps.

There is a maximum of 16 CAN messages which can be defined for the automatic transmission of cyclic
CAN messages. Two modes are available for the automatic transmission. The first mode is called
“parallel mode” the second one is called “sequential mode” .

In parallel mode the cycle times of all defined CAN messages are checked within a process cycle. When
a cycle time of a defined CAN message is over it will be sent to the CAN bus. The cycle time of a defined
CAN message relates to the previous transmission of the same CAN message (refer to Figure 35).

time

CAN message 1 CAN message 2

cycle time 1

cycle time 2cycle time 2

cycle time 1

Figure 35: Example for parallel mode of cyclic CAN messages

In sequential mode the defined CAN messages are considered as a list of CAN messages which should
be sent sequentially to the CAN bus. The cycle time of a defined CAN message relates to the
transmission of the previously defined CAN message (refer to Figure 36). You can define a CAN
message including the same CAN identifier but different data bytes more than once in sequential mode.

time

CAN message 1 CAN message 2

cycle time 1

cycle time 2

cycle time 1

cycle time 2

Figure 36: Example for Sequential mode of cyclic CAN messages

Important:

The transmission of CAN messages by calling the API function UcanWriteCanMsg() or
UcanWriteCanMsgEx() can be influenced by the automatic transmission of cyclic CAN messages. When
the CAN bus load is high (e.g. 50% or more) the CAN messages sent by the application are processed
more rarely. The result could be that these API functions returns the error indicating a full transmit buffer.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 101

Function: UcanDefineCyclicCanMsg

Syntax: UCANRET PUBLIC UcanDefineCyclicCanMsg (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tCanMsgStruct* pCanMsgList_p,

 DWORD dwCount_p);

Usability: HW_INIT , CAN_INIT

Description: The function defines a set of up to 16 CAN messages within firmware
of an USB-CANmodul for the automatic transmission of cyclic CAN
messages. Call function UcanEnableCyclicCanMsg() for enabling the
automatic transmission. Please note that UcanDefineCyclicCanMsg()
completely exchanges a previously defined set of CAN messages.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pCanMsgList_p: Pointer to an array of type tCanMsgStruct containing a set of CAN
messages for automatic transmission. The member m_dwTime of the
structure tCanMsgStruct specifies the cycle time.

This parameter may only be NULL when dwCount_p is zero too. In this
case a previously defined set of CAN messages will be deleted.

 dwCount_p: Specifies the number of CAN messages included within the array. The
value range is 0 to 16. A previously defined set of CAN messages will
be deleted by specifying the number of 0 CAN messages.

Return: Error code of the function - refer to Table 25

Example:

tUcanHandle UcanHandle;

tCabMsgStruct aTxCanMsg[] =

{ {0x080, USBCAN_MSG_FF_STD, 0, {0,0,0,0, 0,0,0,0}, 100}, // message 1

 {0x100, USBCAN_MSG_FF_STD, 4, {1,2,3,4, 0,0,0,0}, 150}}; // message 2

UCANRET bRet;

DWORD dwCount;

 ...

 // define 2 CAN messages for automatic tranmission by the USB-CANmodul

 dwCount = sizeof (aTxCanMsg) / sizeof (aTxCanMsg);

 bRet = UcanDefineCyclicCanMsg (UcanHandle, USBCAN_CHANNEL_CH0,

 &aTxCanMsg[0], dwCount);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 // start the transmission

 bRet = UcanEnableCyclicCanMsg(UcanHandle, USBCAN_CHANNEL_CH0,

 USBCAN_CYCLIC_FLAG_START | USBCAN_CYCLIC_FLAG_NOECHO);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 ...

 }

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 102

Function: UcanReadCyclicCanMsg

Syntax: UCANRET PUBLIC UcanReadCyclicCanMsg (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 tCanMsgStruct* pCanMsgList_p,

 DWORD* pdwCount_p);

Usability: HW_INIT , CAN_INIT

Description: The function reads back the set of CAN messages which was
previously defined for automatic transmission of cyclic CAN messages
(refer to function UcanDefineCyclicCanMsg()).

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pCanMsgList_p: Pointer to an array of type tCanMsgStruct receiving the set of up to 16
CAN messages for automatic transmission. This parameter must not
be NULL.

 pdwCount_p: Pointer to a variable of type DWORD for receiving the number of
defined CAN messages within the set.

Return: Error code of the function - refer to Table 25

Example:

tUcanHandle UcanHandle;

tCabMsgStruct aTxCanMsg[16];

UCANRET bRet;

DWORD dwCount, i;

 ...

 // read the CAN messages for automatic tranmission by the USB-CANmodul

 bRet = UcanReadCyclicCanMsg (UcanHandle, USBCAN_CHANNEL_CH0,

 &aTxCanMsg[0], &pdwCount);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 // print all CAN messages

 for (i = 0; i < dwCount; i++)

 {

 AppPrintMsg (&aTxCanMsg[i]);

 }

 }

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 103

Function: UcanEnableCyclicCanMsg

Syntax: UCANRET PUBLIC UcanEnableCyclicCanMsg (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 DWORD dwFlags_p);

Usability: CAN_INIT

Description: This function specifies the mode of the automatic transmission and
specifies whether the automatic transmission of a set of defined CAN
messages should be enabled or disabled. Additionally separate CAN
messages of the set can be locked or unlocked.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 dwFlags_p: Specifies flags containing the mode, the enable state and the locking
state (refer to Table 23). These flags can be combined.

Return: Error code of the function - refer to Table 25

Table 23: Constants for the flags parameter in function UcanEnableCyclicCanMsg()

Name Value Description

USBCAN_CYCLIC_FLAG_START 0x80000000
If this flag is set, the automatic transmission will be
started, otherwise it will be stopped.

USBCAN_CYCLIC_FLAG_SEQUMODE 0x40000000
If this flag is set, the “sequential mode” is
processed, otherwise the “parallel mode” is
processed (refer to Figure 35 and Figure 36).

USBCAN_CYCLIC_FLAG_NOECHO 0x00010000
If this flag is set, the sent cyclic CAN messages are
not received back using transmit echo.

USBCAN_CYCLIC_FLAG_LOCK_0 –

USBCAN_CYCLIC_FLAG_LOCK_15

0x00000001
-

0x00008000

If same of these flags are set, the appropriate CAN
message from the set is not sent to the CAN bus
(locked state).

Example: Refer to the example on page 101.

4.3.2.3 API Functions for the CAN port

The following API functions can only be used with the USB-CANmodul2. They are an expansion for
using the USB-CANmodul with a low-speed or single-wire CAN transceiver (e.g. TJA1054 or AU5790).
Using these API functions with the USB-CANmodul2 with a high-speed CAN transceiver or
USB-CANmodul1 has no effect. However, no error message will be returned either. In order to use these
API functions, the header file USBCANLS.H must be included in addition to the USBCAN32.H header
file.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 104

Function: UcanWriteCanPort

Syntax: UCANRET PUBLIC UcanWriteCanPort (tUcanHandle UcanHandle_p,

 BYTE bValue_p);

Usability: HW_INIT, CAN_INIT, only single-channel devices

Description: Writes a value to the CAN port interface. Thus, additional signals such
as Standby (STB) and Enable (EN) on a low-speed or single-wire
CAN transceiver can be controlled.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bValue_p: New output value for the CAN port interface (refer to Table 24 and
Table 6).

Return: Error code of the function - refer to Table 25

Note:

With the call to this API function the output value is additionally stored to the non-volatile memory of the
USB-CANmodul. The last stored output value is restored to the CAN port after power-on on the
USB-CANmodul.

Table 24: Constants for low-speed CAN port

Name Value Direction Description

UCAN_CANPORT_TR 0x10 Input Termination resistor

UCAN_CANPORT_ERR 0x20 Input Error signal of low-speed CAN transceiver

UCAN_CANPORT_STB 0x40 Output Stand-by (STB) signal of low-speed CAN transceiver

UCAN_CANPORT_EN 0x80 Output Enable signal (EN) of low-speed CAN transceiver

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 105

Function: UcanWriteCanPortEx

Syntax: UCANRET PUBLIC UcanWriteCanPortEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 BYTE bValue_p);

Usability: HW_INIT, CAN_INIT

Description: Writes a value to the CAN port interface of a specific CAN-channel.
This function is an extended version of function UcanWriteCanPort().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 bValue_p: New output value for the CAN port interface (refer to Table 24 and
Table 6).

Return: Error code of the function - refer to Table 25

Function: UcanReadCanPort

Syntax: UCANRET PUBLIC UcanReadCanPort (tUcanHandle UcanHandle_p,

 BYTE* pbValue_p);

Usability: HW_INIT, CAN_INIT, only single-channel devices

Description: Reads the current input value from the CAN port interface. Thus, the
additional error signal (ERR) can be read on a low-speed CAN
transceiver. It is also possible to read the state/constant for the
terminating resistor on devices with high-speed transceivers (currently
only supported for USB-CANmodul2 – refer to section 2.3).

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pbValue_p: Pointer to a variable that receives the read input value (refer to Table 24
and Table 6). This parameter must not be NULL.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 106

Function: UcanReadCanPortEx

Syntax: UCANRET PUBLIC UcanReadCanPortEx (tUcanHandle UcanHandle_p,

 BYTE bChannel_p,

 BYTE* pbInValue_p,

 BYTE* pbLastOutValue_p);

Usability: HW_INIT, CAN_INIT

Description: Reads the current input value from the specified CAN-channel. This
function is an extended version of function UcanReadCanPort().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1

 pbInValue_p: Pointer to a variable that receives the read input value (refer to Table 24
and Table 6). This parameter must not be NULL.

 pbLastOutValue_p: Pointer to a variable that receives the last written output value (using
UcanWriteCanPort() or UcanWRiteCanPortEx() - refer to Table 24 and
Table 6). This parameter may be NULL.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 107

4.3.2.4 API Functions for the expansion port

The following API functions can only be used with the USB-CANmodul2. They are an expansion for the
use of the USB-CANmodul with the expansion port. Using these API functions with other variants of
USB-CANmodul devices has no effect. In order to use these API functions, the file USBCANUP.H must
be included in addition to the USBCAN32.H header file.

Function: UcanConfigUserPort

Syntax: UCANRET PUBLIC UcanConfigUserPort (tUcanHandle UcanHandle_p,

 BYTE bOutputEnable_p);

Usability: HW_INIT, CAN_INIT

Description: Configures the expansion port (refer to section 2.5). Each individual
pin of the 8-bit port can be used as an input or an output. The logical
value 0 of a bit in the parameter bOutputEnable_p defines the
corresponding pin on the expansion port an input and a logical 1
defines it as an output.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bOutputEnable_p: Configuring the 8-bit port as input or output:

Bit X = 0: Pin X = input
Bit Y = 1: Pin Y = output

Return: Error code of the function - refer to Table 25

Note:

With the call to this API function the configuration value is additionally stored to the non-volatile memory
of the USB-CANmodul. The last stored configuration is restored after power-on on the USB-CANmodul.

Function: UcanWriteUserPort

Syntax: UCANRET PUBLIC UcanWriteUserPort (tUcanHandle UcanHandle_p,

 BYTE bOutputValue_p);

Usability: HW_INIT, CAN_INIT

Description: Writes a value to the expansion port. In order to write to output lines,
the corresponding bits resp. port pins must be configured as outputs
using the UcanConfigUserPort() function.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 bOutputValue_p: New output value for the expansion port outputs. Each bit in this
parameter corresponds to matching pin on the expansion port.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 108

Note:

No time critical switching procedures can be performed with this function using the expansion port, since
the reaction time is influenced by multiple factors.

With the call to this API function the output value is additionally stored to the non-volatile memory of the
USB-CANmodul. The last stored configuration is restored after power-on on the USB-CANmodul.

Function: UcanReadUserPort

Syntax: UCANRET PUBLIC UcanReadUserPort (tUcanHandle UcanHandle_p,

 BYTE* pbInputValue_p);

Usability: HW_INIT, CAN_INIT

Description: Reads the current input value from the expansion port. This function
can also be used to read back the states of ports configured as
outputs.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pbInputValue_p: Pointer to a variable that receives the read input value. This variable
then contains the state of the 8-bit expansion port. Each bit in this
parameter corresponds to matching pin on the expansion port. This
parameter must not be NULL.

Return: Error code of the function - refer to Table 25

Function: UcanReadUserPortEx

Syntax: UCANRET PUBLIC UcanReadUserPortEx (tUcanHandle UcanHandle_p,

 BYTE* pbInputValue_p,

 BYTE* pbLastOutputEnable_p,

 BYTE* pbLastOutputValue_p);

Usability: HW_INIT, CAN_INIT

Description: Reads the current input value from the expansion port. This function is
an extended version of function UcanReadUserPort().

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware(), UcanInitHardwareEx() or UcanInitHardwareEx2()
as well as UcanEnumerateHardware().

 pbInputValue_p: Pointer to a variable that receives the read input value. This variable
then contains the state of the 8-bit expansion port. Each bit in this
parameter corresponds to matching pin on the expansion port. This
parameter must not be NULL.

 pbLastOutputEnable_p: Pointer to a variable that receives the output configuration
(configuration that was previously done with UcanConfigUserPort()).
This parameter may be NULL.

 pbLastOutputValue_p: Pointing to a variable that receives the last output value (value that
was written with UcanWriteUserPort()). This parameter may be NULL.

Return: Error code of the function - refer to Table 25

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 109

4.3.3 Error codes of the API functions

The API functions of the DLL return an error code with the type of UCANRET. Each return value
represents an error. The only two exceptions are the functions UcanReadCanMsg() and
UcanReadCanMsgEx() which can also return warnings. The warning USBCAN_WARN_NODATA
indicates that no CAN messages are in the buffer. Other warnings indicate that an event has occurred
but a valid CAN message is transferred.

Table 25: Error codes of the API functions

Error code Value Description

USBCAN_SUCCESSFUL 0x00 This value returns if the function is executed successfully.

USBCAN_ERR_RESOURCE 0x01
This error code returns if one resource could not be generated. In this
case the term resource means memory and handles provided by the
Windows OS.

USBCAN_ERR_MAXMODULES 0x02

An application has tried to open more than 64 USB-CANmodul devices.
The standard version of the DLL only supports up to 64 USB-CANmodul
devices at the same time. This error also appears if several applications
try to access more than 64 USB-CANmodul devices. For example,
application 1 has opened 60 modules, application 2 has opened 4
modules and application 3 wants to open a module. Application 3
receives this error code.

USBCAN_ERR_HWINUSE 0x03
An application tries to initialize an USB-CANmodul with the given device
number. If this module has already been initialized by its own or by
another application, this error code is returned.

USBCAN_ERR_ILLVERSION 0x04

This error code returns if the firmware version of the USB-CANmodul is
not compatible to the software version of the DLL. In this case, install
the latest driver for the USB-CANmodul. Furthermore, make sure that
the latest firmware version is programmed to the USB-CANmodul.

USBCAN_ERR_ILLHW 0x05

This error code returns if an USB-CANmodul with the given device
number is not found. If the function UcanInitHardware() or
UcanInitHardwareEx() has been called with the device number
USBCAN_ANY_MODULE, and the error code appears, it indicates that
no module is connected to the PC or all connected modules are already
in use.

USBCAN_ERR_ILLHANDLE 0x06
This error code returns if a function received an incorrect USBCAN
handle. The function first checks which USB-CANmodul is related to this
handle. This error occurs if no device belongs this handle.

USBCAN_ERR_ILLPARAM 0x07
This error code returns if a wrong parameter is passed to the function.
For example, the value NULL has been passed to a pointer variable
instead of a valid address.

USBCAN_ERR_BUSY 0x08
This error code occurs if several threads are accessing an
USB-CANmodul within a single application. After the other threads have
finished their tasks, the function may be called again.

USBCAN_ERR_TIMEOUT 0x09
This error code occurs if the function transmits a command to the
USB-CANmodul but no reply is returned. To solve this problem, close
the application, disconnect the USB-CANmodul, and connect it again.

USBCAN_ERR_IOFAILED 0x0A

This error code occurs if the communication to the kernel driver was
interrupted. This happens, for example, if the USB-CANmodul is
disconnected during transferring data or commands to the
USB-CANmodul.

USBCAN_ERR_DLL_TXFULL 0x0B

The function UcanWriteCanMsg() or UcanWriteCanMsgEx() first checks
if the transmit buffer within the DLL has enough capacity to store new
CAN messages. If the buffer is full, this error code returns. The CAN
message passed to these functions will not be written into the transmit
buffer in order to protect other CAN messages against overwriting. The
size of the transmit buffer is configurable (refer to function
UcanInitCanEx() and structure tUcanInitCanParam).

USBCAN_ERR_MAXINSTANCES 0x0C

A maximum amount of 64 applications is able to have access to the
DLL. If more applications attempting to access to the DLL, this error
code is returned. In this case, it is not possible to use an
USB-CANmodul by this application.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 110

Error code Value Description

USBCAN_ERR_CANNOTINIT 0x0D

This error code returns if an application tries to call an API function
which only can be called in software state CAN_INIT but the current
software is still in state HW_INIT. Refer to section 4.3.1 and Table 12 for
detailed information.

USBCAN_ERR_DISCONNECT 0x0E
This error code occurs if an API function was called for an
USB-CANmodul that was plugged-off from the computer recently.

USBCAN_ERR_ILLCHANNEL 0x10
This error code is returned if an extended function of the DLL is called
with parameter bChannel_p = USBCAN_CHANNEL_CH1, but a single-
channel USB-CANmodul was used.

USBCAN_ERR_ILLHWTYPE 0x12
This error code occurs if an extended function of the DLL was called for
a hardware which does not support the feature.

USBCAN_ERRCMD_NOTEQU 0x40

This error code occurs during communication between the PC and an
USB-CANmodul. The PC sends a command to the USB-CANmodul,
then the module executes the command and returns a response to the
PC. This error code returns if the reply does not correspond to the
command.

USBCAN_ERRCMD_REGTST 0x41

The software tests the CAN controller on the USB-CANmodul when the
CAN interface is initialized. Several registers of the CAN controller are
checked. This error code returns if an error appears during this register
test.

USBCAN_ERRCMD_ILLCMD 0x42
This error code returns if the USB-CANmodul receives a non-defined
command. This error represents a version conflict between the firmware
in the USB-CANmodul and the DLL.

USBCAN_ERRCMD_EEPROM 0x43
The USB-CANmodul has a built-in EEPROM. This EEPROM contains
several configurations, e.g. the device number and the serial number. If
an error occurs while reading these values, this error code is returned.

USBCAN_ERRCMD_ILLBDR 0x47
The USB-CANmodul has been initialized with an invalid baud rate (refer
to section 4.3.4).

USBCAN_ERRCMD_NOTINIT 0x48
It was tried to access a CAN-channel of a multi-channel
USB-CANmodul that was not initialized.

USBCAN_ERRCMD_ALREADYINIT 0x49
The accessed CAN-channel of a multi-channel USB-CANmodul was
already initialized.

USBCAN_ERRCMD_ILLSUBCMD 0x4A
An internal error occurred within the DLL. In this case an unknown sub-
command was called instead of a main command (e.g. for the cyclic
CAN message-feature).

USBCAN_ERRCMD_ILLIDX 0x4B
An internal error occurred within the DLL. In this case an invalid index
for a list was delivered to the firmware (e.g. for the cyclic CAN message-
feature).

USBCAN_ERRCMD_RUNNING 0x4C
The caller tries to define a new list of cyclic CAN messages but this
feature was already started. For defining a new list, it is necessary to
stop the feature beforehand.

USBCAN_WARN_NODATA 0x80
If the function UcanReadCanMsg() or UcanReadCanMsgEx() returns
with this warning, it is an indication that the receive buffer contains no
CAN messages.

USBCAN_WARN_SYS_RXOVERRUN 0x81

This is returned by UcanReadCanMsg() or UcanReadCanMsgEx() if the
receive buffer within the kernel driver runs over. The function
nevertheless returns a valid CAN message. It also indicates that at least
one CAN message is lost. However, it does not indicate the position of
the lost CAN messages.

USBCAN_WARN_DLL_RXOVERRUN 0x82

The DLL automatically requests CAN messages from the
USB-CANmodul and stores the messages into a buffer of the DLL. If
more CAN messages are received than the DLL buffer size allows, this
error code returns and CAN messages are lost. However, it does not
indicate the position of the lost CAN messages. The size of the receive
buffer is configurable (refer to function UcanInitCanEx() and structure
tUcanInitCanParam).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 111

Error code Value Description

USBCAN_WARN_FW_TXOVERRUN 0x85

This warning is returned by function UcanWriteCanMsg() or
UcanWriteCanMsgEx() if flag USBCAN_CANERR_QXMTFULL is set in
the CAN driver status. However, the transmit CAN message could be
stored to the DLL transmit buffer. This warning indicates that at least
one transmits CAN message got lost in the device firmware layer. This
warning does not indicate the position of the lost CAN message.

USBCAN_WARN_FW_RXOVERRUN 0x86

This warning is returned by function UcanWriteCanMsg() or
UcanWriteCanMsgEx() if flag USBCAN_CANERR_QOVERRUN or flag
USBCAN_CANERR_OVERRUN are set in the CAN driver status. The
function has returned with a valid CAN message. This warning indicates
that at least one received CAN message got lost in the firmware layer.
This warning does not indicate the position of the lost CAN message.

USBCAN_WARN_NULL_PTR 0x90
This warning is returned by functions UcanInitHwConnectControl() or
UcanInitHwConnectControlEx() if a NULL pointer was passed as
callback function address.

USBCAN_WARN_TXLIMIT 0x91

This warning is returned by the function UcanWriteCanMsgEx() if it was
called to transmit more than one CAN message, but a part of them
could not be stored to the transmit buffer within the DLL (because the
buffer is full). The returned variable addressed by the parameter
pdwCount_p indicates the number of CAN messages which are stored
successfully to the transmit buffer.

Use the following macros are for checking the return value of several functions:

Macro: USBCAN_CHECK_VALID_RXCANMSG

Syntax: USBCAN_CHECK_VALID_RXCANMSG(bRet_p)

Description: This Macro checks whether the function UcanReadCanMsg() or
UcanReadCanMsgEx() returns a valid CAN message.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_TX_OK

Syntax: USBCAN_CHECK_TX_OK(bRet_p)

Description: This Macro checks whether the function UcanWriteCanMsg() or
UcanWriteCanMsgEx() successfully wrote CAN message(s) to the
transmit buffer. While using UcanWriteCanMsgEx() the number of
written CAN messages may be less than the number of CAN
messages passed to this function (refer to error code
USBCAN_WARN_TXLIMIT).

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 112

Macro: USBCAN_CHECK_TX_SUCCESS

Syntax: USBCAN_CHECK_TX_SUCCESS(bRet_p)

Description: This Macro checks whether the function UcanWriteCanMsg() or
UcanWriteCanMsgEx() successfully wrote all CAN message(s) to the
transmit buffer.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_TX_NOTALL

Syntax: USBCAN_CHECK_TX_NOTALL(bRet_p)

Description: This Macro checks whether the function UcanWriteCanMsgEx() could
not write at least one CAN message to the transmit buffer.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_WARNING

Syntax: USBCAN_CHECK_WARNING(bRet_p)

Description: This Macro checks whether any function returned a warning.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

Macro: USBCAN_CHECK_ERROR

Syntax: USBCAN_CHECK_ERROR(bRet_p)

Description: This Macro checks whether any function returned an error.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 113

Macro: USBCAN_CHECK_ERROR_CMD

Syntax: USBCAN_CHECK_ERROR(bRet_p)

Description: This Macro checks whether any function returned an error which
occurred in firmware of the USB-CANmodul.

Parameter:

 bRet_p: Return value of type UCANRET as defined in Table 25.

Return: FALSE (zero) or TRUE (non-zero)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 114

4.3.4 Baud Rate Configuration

Sections 4.3.4.1 and 4.3.4.2 describes the baud rate configuration of obsolete types of USB-CANmodul
devices. The baud rate configuration of these devices is described here only for compatibility reason.

In section 4.3.4.3 the baud rate configuration of the USB-CANmodul devices of fourth generation is
described. Only these devices are documented within the scope of this manual.

4.3.4.1 Baud Rate Configuration for first and second generation USB-CANmodul

The baud rate configuration for obsolete USB-CANmodul devices of first and second generation is
passed to the API function UcanInitCan() as parameter bBTR0_p and bBTR1_p. Using the API function
UcanInitCanEx() and/or UcanInitCanEx2() this configuration is passed to the parameters m_bBTR0 and
m_bBTR1 located in structure tUcanInitCanParam. The configuration may also be changed later by
calling the function UcanSetBaudrate() or UcanSetBaudrateEx().

The following values are recommended if obsolete USB-CANmodul devices of first and/or second
generation shall be supported by your application too:

Table 26: Constants for CAN baud rates for first and second generation

Name Value Description Sample-point

USBCAN_BAUD_10kBit 0x672F CAN baud rate 10 kbps 85.00%

USBCAN_BAUD_20kBit 0x532F CAN baud rate 20 kbps 85.00%

USBCAN_BAUD_50kBit 0x472F CAN baud rate 50 kbps 85.00%

USBCAN_BAUD_100kBit 0x432F CAN baud rate 100 kbps 85.00%

USBCAN_BAUD_125kBit 0x031C CAN baud rate 125 kbps 87.50%

USBCAN_BAUD_250kBit 0x011C CAN baud rate 250 kbps 87.50%

USBCAN_BAUD_500kBit 0x001C CAN baud rate 500 kbps 87.50%

USBCAN_BAUD_800kBit 0x0016 CAN baud rate 800 kbps 80.00%

USBCAN_BAUD_1MBit 0x0014 CAN baud rate 1000 kbps 75.00%

USBCAN_BAUD_USE_BTREX 0x0000
Parameter dwBaudrate is used – refer to

Table 27, Table 28 or Table 29

Use the macros HIGBYTE() to pass the constant defined in Table 26 to the parameter BTR0 and use
the macro LOBYTE() to pass the constant to the parameter BTR1.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 115

Example:

tUcanHandle UcanHandle;

UCANRET bRet;

 ...

 // initializes the hardware

 bRet = UcanInitHardware (&UcanHandle, 0, NULL);

 ...

 // initializes the CAN interface

 bRet = UcanInitCan (UcanHandle,

 HIBYTE (USBCAN_BAUD_1MBit), // BTR0 for 1MBit/s

 LOBYTE (USBCAN_BAUD_1MBit), // BTR1 for 1MBit/s

 0xFFFFFFFF, // AMR for all messages received

 0x00000000); // ACR for all messages received

 // Error? print error

 if (bRet != USBCAN_SUCCESSFUL)

 PrintError (bRet);

 ...

Configuration of user-defined baud rates is also possible. The structure of the BTR0 and BTR1 registers
is described below. Refer to the NXP SJA1000 manual for detailed description.

Bit 7 6 5 4 3 2 1 0

SJW BPR[5:0]

Figure 37: Structure of baud rate register BTR0

Bit 7 6 5 4 3 2 1 0

SAM TSEG2[2:0] TSEG1[3:0]

Figure 38: Structure of baud rate register BTR1

Parameter:

 BPR: Baudrate Prescaler specifies the ratio between system clock of the SJA1000
and the bus clock on the CAN-bus.

 SJW: Synchronization Jump Width specifies the compensation of the phase-shift
between the system clock and the different CAN-controllers connected to the
CAN-bus.

 SAM: Sampling specifies the number of sample points used for reading the bits on
the CAN-bus. If SAM=1 three sample points are used, otherwise only one
sample point is used.

 TSEG1, TSEG2: Time Segment specifies the number of clock cycles of one bit on the CAN-
bus as well as the position of the sample points.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 116

Figure 39: General structure of one bit on the CAN-bus (source: NXP SJA1000 manual)

The following mathematical correlations apply:

𝑡𝐶𝐿𝐾 =
1

16 𝑀𝐻𝑧
= 62.5𝑛𝑠 (system clock)

𝑡𝑆𝐶𝐿 = 2 ∙ 𝑡𝐶𝐿𝐾 ∙ (𝐵𝑃𝑅 + 1) (bus clock)

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 𝑡𝑆𝐶𝐿

𝑡𝑇𝑆𝐸𝐺1 = 𝑡𝑆𝐶𝐿 ∙ (𝑇𝑆𝐸𝐺1 + 1)

𝑡𝑇𝑆𝐸𝐺2 = 𝑡𝑆𝐶𝐿 ∙ (𝑇𝑆𝐸𝐺2 + 1)

𝑡𝐵𝑖𝑡 = 𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 + 𝑡𝑇𝑆𝐸𝐺1 + 𝑡𝑇𝑆𝐸𝐺2 (time of one bit on the CAN bus)

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝑇𝑆𝐸𝐺1

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝑇𝑆𝐸𝐺1+𝑡𝑇𝑆𝐸𝐺2
∙ 100% (sample-point)

Example for 125 kbps (TSEG1 = 12, TSEG2 = 1, BPR = 3):

𝑡𝑆𝐶𝐿 = 2 ∙ 62.5𝑛𝑠 ∙ (3 + 1) = 500𝑛𝑠

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 500𝑛𝑠 = 500𝑛𝑠

𝑡𝑇𝑆𝐸𝐺1 = 500𝑛𝑠 ∙ (12 + 1) = 6500𝑛𝑠

𝑡𝑇𝑆𝐸𝐺2 = 500𝑛𝑠 ∙ (1 + 1) = 1000𝑛𝑠

𝑡𝐵𝑖𝑡 = 500𝑛𝑠 + 6500𝑛𝑠 + 1000𝑛𝑠 = 8000𝑛𝑠

1

𝑡𝐵𝑖𝑡
=

1

8000𝑛𝑠
= 125𝑘𝑏𝑝𝑠

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
500𝑛𝑠+6500𝑛𝑠

500𝑛𝑠+6500𝑛𝑠+1000𝑛𝑠
∙ 100% = 87.5%

4.3.4.2 Baud Rate Configuration for third generation USB-CANmodul

The baud rate configuration for obsolete USB-CANmodul devices of third generation is passed to the
API function UcanInitCanEx() and/or UcanInitCanEx2() using the parameters m_dwBaudrate located in
structure tUcanInitCanParam. The configuration may also be changed later by calling the function
UcanSetBaudrateEx().

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 117

The following values are recommended if obsolete USB-CANmodul devices of third generation shall be
supported by your application:

Table 27: Constants for CAN baud rates for third generation

Name Value Description Sample-point

USBCAN_BAUDEX_SP2_10kBit 0x80771772 CAN baud rate 10 kbps 85.00%

USBCAN_BAUDEX_SP2_20kBit 0x00771772 CAN baud rate 20 kbps 85.00%

USBCAN_BAUDEX_SP2_50kBit 0x003B1741 CAN baud rate 50 kbps 87.50%

USBCAN_BAUDEX_SP2_100kBit 0x001D1741 CAN baud rate 100 kbps 87.50%

USBCAN_BAUDEX_SP2_125kBit 0x00170741 CAN baud rate 125 kbps 87.50%

USBCAN_BAUDEX_SP2_250kBit 0x000B0741 CAN baud rate 250 kbps 87.50%

USBCAN_BAUDEX_SP2_500kBit 0x00050741 CAN baud rate 500 kbps 87.50%

USBCAN_BAUDEX_SP2_800kBit 0x00030731 CAN baud rate 800 kbps 86.67%

USBCAN_BAUDEX_SP2_1MBit 0x00020741 CAN baud rate 1000 kbps 87.50%

USBCAN_BAUDEX_USE_BTR01 0x00000000
Parameters BTR0/BTR1 are used –
refer to Table 26

Configuration of user-defined baud rates is possible. The register structure for extended baud rate
configuration is described below.

Bit 31 30 29 28 27 26 25 24

CLK - SMP

Bit 23 22 21 20 19 18 17 16

- BRP[6:0]

Bit 15 14 13 12 11 10 9 8

- SJW[1:0] - PROP_SEG[2:0]

Bit 7 6 5 4 3 2 1 0

- PHASE_SEG1[2:0] - PHASE_SEG2[2:0]

Figure 40: Structure of baud rate register dwBaudrate of third generation modules

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 118

Parameter:

 CLK: Clock specifies the frequency of the microcontroller. If set to 0, then the
microcontroller runs with 48 MHz clock cycle internally, otherwise it runs with
24 MHz. This influences the CAN-bus baud rate (refer to system clock tMCK in
the following example).

 SMP Sampling specifies the number of sample points used for reading the bits on
the CAN-bus. If SAM=1 three sample points are used, otherwise only one
sample point is used.

 BRP: Baudrate Prescaler specifies the ratio between system clock of the
microcontroller and the bus clock on the CAN-bus.

 SJW: Synchronization Jump Width specifies the compensation of the phase-shift
between the system clock and the different CAN-controllers connected to the
CAN-bus.

 PHASE_SEG1,
PHASE_SEG2:

Time Segment specifies the number of clock cycles of one bit on the CAN-
bus as well as the position of the sample points.

Figure 41: General structure of one bit on the CAN-bus (source: Atmel AT91SAM7A3 manual)

The following mathematical correlations apply:

𝑡𝑀𝐶𝐾0 =
1

48 𝑀𝐻𝑧
= 20.833𝑛𝑠 (system clock if CLK = 0)

𝑡𝑀𝐶𝐾1 =
1

24 𝑀𝐻𝑧
= 41.667𝑛𝑠 (system clock if CLK = 1)

𝑡𝐶𝑆𝐶 = 𝑡𝑀𝐶𝐾𝑥 ∙ (𝐵𝑅𝑃 + 1) (bus clock)

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 𝑡𝐶𝑆𝐶

𝑡𝑃𝑅𝑆 = 𝑡𝐶𝑆𝐶 ∙ (𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 + 1)

𝑡𝑃𝐻𝑆1 = 𝑡𝐶𝑆𝐶 ∙ (𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 + 1)

𝑡𝑃𝐻𝑆2 = 𝑡𝐶𝑆𝐶 ∙ (𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2 + 1)

𝑡𝐵𝑖𝑡 = 𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 + 𝑡𝑃𝑅𝑆 + 𝑡𝑃𝐻𝑆1 + 𝑡𝑃𝐻𝑆2 (time of one bit on the CAN bus)

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝑃𝑅𝑆+𝑡𝑃𝐻𝑆1

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝑃𝑅𝑆+𝑡𝑃𝐻𝑆1+𝑡𝑃𝐻𝑆2
∙ 100% (sample-point)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 119

Example for 125 kbps (PROP_SEG = 7, PHASE_SEG1 = 4, PHASE_SEG2 = 1, BRP = 23, CLK=0):

𝑡𝐶𝑆𝐶 = 20.833𝑛𝑠 ∙ (23 + 1) = 500𝑛𝑠

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 500𝑛𝑠 = 500𝑛𝑠

𝑡𝑃𝑅𝑆 = 500𝑛𝑠 ∙ (7 + 1) = 4000𝑛𝑠

𝑡𝑃𝐻𝑆1 = 500𝑛𝑠 ∙ (4 + 1) = 2500𝑛𝑠

𝑡𝑃𝐻𝑆2 = 500𝑛𝑠 ∙ (1 + 1) = 1000𝑛𝑠

𝑡𝐵𝑖𝑡 = 500𝑛𝑠 + 4000𝑛𝑠 + 2500𝑛𝑠 + 1000𝑛𝑠 = 8000𝑛𝑠

1

𝑡𝐵𝑖𝑡
=

1

8000𝑛𝑠
= 125𝑘𝑏𝑝𝑠

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
500𝑛𝑠+4000𝑛𝑠+2500𝑛𝑠

500𝑛𝑠+4000𝑛𝑠+2500𝑛𝑠+1000𝑛𝑠
∙ 100% = 87.5%

Note:

For compatibility reasons, constant USBCAN_BAUDEX_USE_BTR01 was defined. If this constant is
used for baud rate configuration in parameter m_dwBaudrate of structure tUcanInitCanParam, the
parameters m_bBTR0 and m_bBTR1 registers become available for configuration. In this case, only the
baud rates in Table 26 are available. Configuration of user-specific baud rates is not possible (error code
USBCAN_ERRCMD_ILLBDR will be returned).

Example 1 (compatible to first and second generation):

tUcanHandle UcanHandle;

UCANRET bRet;

tUcanInitCanParam InitParam;

 ...

 // preset all init parameters

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_125kBit);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_125kBit);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_AMR_ALL;

 InitParam.m_dwACR = USBCAN_ACR_ALL;

 InitParam.m_dwBaudrate = USBCAN_BAUDEX_USE_BTR01;

 InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 // initialize CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 120

Example 2: (not compatible to first and second generation):

tUcanHandle UcanHandle;

UCANRET bRet;

tUcanInitCanParam InitParam;

 ...

 // preset init parameters

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_AMR_ALL;

 InitParam.m_dwACR = USBCAN_ACR_ALL;

 InitParam.m_dwBaudrate = USBCAN_BAUDEX_SP2_125kBit;

 InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 // initialize CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 121

4.3.4.3 Baud Rate Configuration for fourth generation USB-CANmodul Revision 01

Since driver-version V5.00 a new device-revision is supported „Fourth Generation – USB-CANmodul
(abbr. G4). Due to discontinue of components changes had to be done for the configuration of baud
rates. However, the software was changed in order the baud rate constants of Table 27 can still be used
for the new device revision. Should other baud rate settings become necessary these settings must be
done as followed:

Due to compatibility reasons the pre-defined values BTR0 and BTR1 from Table 26 can still be used for
USB-CANmodul devices of fourth generation. If the value USBCAN_BAUD_USE_BTREX is used for
BTR0 and BTR1, the pre-defined values of Table 27 can be used for the m_dwBaudrate as well.
However, the correct pre-defined values for the fourth generation are as follows:

Table 28: Constants for CAN baud rates for fourth generation Rev.01 (CPU freq. = 96 MHz)

Name Value Description Sample-
point

USBCAN_BAUDEX_G4_10kBit 0x412F0077 CAN baud rate 10 kbps 85.00%

USBCAN_BAUDEX_G4_20kBit 0x412F003B CAN baud rate 20 kbps 85.00%

USBCAN_BAUDEX_G4_50kBit 0x412F0017 CAN baud rate 50 kbps 85.00%

USBCAN_BAUDEX_G4_100kBit 0x412F000B CAN baud rate 100 kbps 85.00%

USBCAN_BAUDEX_G4_125kBit 0x401C000B CAN baud rate 125 kbps 87.50%

USBCAN_BAUDEX_G4_250kBit 0x401C0005 CAN baud rate 250 kbps 87.50%

USBCAN_BAUDEX_G4_500kBit 0x401C0002 CAN baud rate 500 kbps 87.50%

USBCAN_BAUDEX_G4_800kBit 0x401B0001 CAN baud rate 800 kbps 86.67%

USBCAN_BAUDEX_G4_1MBit 0x40180001 CAN baud rate 1000 kbps 83.33%

USBCAN_BAUDEX_USE_BTR01 0x00000000
Parameters BTR0/BTR1 are used – refer
to Table 26

Table 29: Constants for CAN baud rates for fourth generation Rev.01 (CPU freq. = 120 MHz)

Name Value Description
Sample-

point

USBCAN_BAUDEX_G4X_10kBit 0xC12F0095 CAN baud rate 10 kbps 85.00%

USBCAN_BAUDEX_G4X_20kBit 0xC12F004A CAN baud rate 20 kbps 85.00%

USBCAN_BAUDEX_G4X_50kBit 0xC12F001D CAN baud rate 50 kbps 85.00%

USBCAN_BAUDEX_G4X_100kBit 0xC12F000E CAN baud rate 100 kbps 85.00%

USBCAN_BAUDEX_G4X_125kBit 0xC02F000B CAN baud rate 125 kbps 85.00%

USBCAN_BAUDEX_G4X_250kBit 0xC02F0005 CAN baud rate 250 kbps 85.00%

USBCAN_BAUDEX_G4X_500kBit 0xC02F0002 CAN baud rate 500 kbps 85.00%

USBCAN_BAUDEX_G4X_800kBit - CAN baud rate 800 kbps – not supported -

USBCAN_BAUDEX_G4X_1MBit 0xC01B0001 CAN baud rate 1000 kbps 86.67%

USBCAN_BAUDEX_USE_BTR01 0x00000000
Parameters BTR0/BTR1 are used – refer
to Table 26

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 122

User-defined values can be set by the user. Following the format of the baud rate register is explained.

Bit 31 30 29 28 27 26 25 24

CLK 1 0 - SJW[1:0]

Bit 23 22 21 20 19 18 17 16

- TS2[2:0] TS1[3:0]

Bit 15 14 13 12 11 10 9 8

- BRP[9:8]

Bit 7 6 5 4 3 2 1 0

BRP[7:0]

Figure 42: Structure of baud rate register dwBaudrate for fourth generation modules Rev.01

Parameter:

 CLK: Clock specifies the speed of the microcontroller (since firmware version
V5.11 available). If this bit is set to 0, the microcontroller internally runs with
96 MHz (standard CPU speed) and the CAN controller periphery is clocked
with 24 MHz. But if this bit is set to 1, the microcontroller internally runs with
120 MHz (25% higher performance) and the CAN controller periphery is
clocked with 30 MHz. This has an effect on the bit rate settings.

 SJW: Synchronization Jump Width specifies the compensation of the phase-shift
between the system clock and the different CAN-controllers connected to the
CAN-bus.

 TS1, TS2: Time Segment specifies the number of clock cycles of one bit on the CAN-
bus as well as the position of the sample points.

 BRP: Baudrate Prescaler specifies the ratio between internal clock of the
microcontroller and the bus clock on the CAN-bus.

Figure 43: General structure of one bit on the CAN-bus (source: STM32F205xx manual)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 123

The following mathematical correlations apply:

𝑡𝑃𝐶𝐿𝐾0 =
1

24 𝑀𝐻𝑧
= 41.667𝑛𝑠 (system clock if CLK = 0)

𝑡𝑃𝐶𝐿𝐾1 =
1

30 𝑀𝐻𝑧
= 33.333𝑛𝑠 (system clock if CLK = 1)

𝑡𝑞 = 𝑡𝑃𝐶𝐿𝐾𝑥 ∙ (𝐵𝑅𝑃 + 1) (bus clock)

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 𝑡𝑞

𝑡𝐵𝑆1 = 𝑡𝑞 ∙ (𝑇𝑆1 + 1)

𝑡𝐵𝑆2 = 𝑡𝑞 ∙ (𝑇𝑆2 + 1)

𝑡𝐵𝑖𝑡 = 𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 + 𝑡𝐵𝑆1 + 𝑡𝐵𝑆2 (time of one bit on the CAN bus)

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝐵𝑆1

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝐵𝑆1+𝑡𝐵𝑆2
∙ 100% (sample-point)

Example for 125 kbps (TS1 = 12, TS2 = 1, BPR = 11, standard CPU speed = 96 MHz):

𝑡𝑞 = 41.667𝑛𝑠 ∙ (11 + 1) = 500𝑛𝑠

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 500𝑛𝑠 = 500𝑛𝑠

𝑡𝐵𝑆1 = 500𝑛𝑠 ∙ (12 + 1) = 6500𝑛𝑠

𝑡𝐵𝑆2 = 500𝑛𝑠 ∙ (1 + 1) = 1000𝑛𝑠

𝑡𝐵𝑖𝑡 = 500𝑛𝑠 + 6500𝑛𝑠 + 1000𝑛𝑠 = 8000𝑛𝑠

1

𝑡𝐵𝑖𝑡
=

1

8000𝑛𝑠
= 125𝑘𝑏𝑝𝑠

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
500𝑛𝑠+6500𝑛𝑠

500𝑛𝑠+6500𝑛𝑠+1000𝑛𝑠
∙ 100% = 87.5%

Example (not compatible to first, second and third generation):

tUcanHandle UcanHandle;

UCANRET bRet;

tUcanInitCanParam InitParam;

 ...

 // preset init parameters

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_AMR_ALL;

 InitParam.m_dwACR = USBCAN_ACR_ALL;

 InitParam.m_dwBaudrate = USBCAN_BAUDEX_G4_125kBit;

 InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 // initialize CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 124

Note:

The higher performance of the USB-CANmodul devices only can be activated since firmware version
V5.11. The activation is done by the tool USB-CANmodul Control within the tab-sheet “Hardware” using
the button “Change” (refer to section 4.2.1). If the higher performance is activated, the bit rate constants
USBCAN_BAUDEX_G4X_... has to be used (refer to Table 29) instead of the constants
USBCAN_BAUDEX_G4_... (refer to Table 28). Otherwise, the error code USBCAN_ERRCMD_ILLBDR
(0x47) is returned by the API functions. In addition, not all CAN baud rates are supported if the higher
performance is activated (e.g. 800 kbps).

4.3.4.4 Baud Rate Configuration for fifth generation USB-CANmodul1 C Revision 01

Due to compatibility reasons the pre-defined values BTR0 and BTR1 from Table 26 can still be used for
USB-CANmodul1 C devices of fifth generation. If the value USBCAN_BAUD_USE_BTREX is used for
BTR0 and BTR1, the pre-defined values of Table 27, Table 28 and Table 29 can be used for the
m_dwBaudrate as well.

Table 30: Constants for CAN baud rates for fifth generationof USB-CANmodul1 C Rev.01

Name Value Description
Sample-

point

- 0x24633207 CAN baud rate 10 kbps 86.67%

- 0x24313207 CAN baud rate 20 kbps 86.67%

- 0x24133207 CAN baud rate 50 kbps 86.67%

- 0x24093207 CAN baud rate 100 kbps 86.67%

- 0x24073207 CAN baud rate 125 kbps 86.67%

- 0x24033207 CAN baud rate 250 kbps 86.67%

- 0x24013207 CAN baud rate 500 kbps 86.67%

- 0x24003F09 CAN baud rate 800 kbps 86.67%

- 0x24003207 CAN baud rate 1000 kbps 86.67%

USBCAN_BAUDEX_USE_BTR01 0x00000000
Parameters BTR0/BTR1 are used –
refer to Table 26

User-defined values can be set by the user. Following the format of the baud rate register is explained.

Bit 31 30 29 28 27 26 25 24

0 0 1 SJW[3:0] BRP[8]

Bit 23 22 21 20 19 18 17 16

BRP[7:0]

Bit 15 14 13 12 11 10 9 8

TS2[7:0]

Bit 7 6 5 4 3 2 1 0

- TS2[6:0]

Figure 44: Structure of baud rate register dwBaudrate for USB-CANmodul1 C Rev.01

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 125

Parameter:

 SJW: Synchronization Jump Width specifies the compensation of the phase-shift
between the system clock and the different CAN-controllers connected to the
CAN-bus.

 TS1, TS2: Time Segment specifies the number of clock cycles of one bit on the CAN-
bus as well as the position of the sample points.

 BRP: Baudrate Prescaler specifies the ratio between internal clock of the
microcontroller and the bus clock on the CAN-bus.

The general structure of one bit on the CAN-bus for USB-CANmodul1 C Revision 01 is the same as for
the USB-CANmodul Revision 01 device shown in Figure 43.

The following mathematical correlations apply:

𝑡𝐶𝐴𝑁_𝐶𝐿𝐾 =
1

60 𝑀𝐻𝑧
= 16.667𝑛𝑠 (CAN clock)

𝑡𝑞 = 𝑡𝐶𝐴𝑁_𝐶𝐿𝐾 ∙ (𝐵𝑅𝑃 + 1) (bus clock)

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 = 1 ∙ 𝑡𝑞

𝑡𝐵𝑆1 = 𝑡𝑞 ∙ (𝑇𝑆1 + 1)

𝑡𝐵𝑆2 = 𝑡𝑞 ∙ (𝑇𝑆2 + 1)

𝑡𝐵𝑖𝑡 = 𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺 + 𝑡𝐵𝑆1 + 𝑡𝐵𝑆2 (time of one bit on the CAN bus)

𝑝𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝐵𝑆1

𝑡𝑆𝑌𝑁𝐶𝑆𝐸𝐺+𝑡𝐵𝑆1+𝑡𝐵𝑆2
∙ 100% (sample-point)

Example (not compatible to first, second, third generation and fourth generation Rev.01):

tUcanHandle UcanHandle;

UCANRET bRet;

tUcanInitCanParam InitParam;

 ...

 // preset init parameters

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_AMR_ALL;

 InitParam.m_dwACR = USBCAN_ACR_ALL;

 InitParam.m_dwBaudrate = 0x24073207; // value for 125kbps

 InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 // initialize CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 126

4.3.4.5 Use of user-defined CAN baud rates

Because the configuration of the CAN baud rate is done via register values, also other CAN baud rates
can be set not listed with the previous sub-sections. For defining these CAN baud rates the mathematical
correlations must be used given in the previous sub-sections. In Table 31 a selection of CAN baud rates
only for USB-CANmodul devices of fourth generations are listed which have been frequently asked for.

Table 31: Examples for user-defined CAN baud rates

CAN baud rate
Value / sample-point
(normal CPU speed)

Value / sample-point
(high CPU speed)

33.333 kbps 0x412F0023 / 85.00% 0xC02F002C / 85.00%

83.333 kbps 0x411E000F / 88.89% 0xC02F0011 / 85.00%

307.692 kbps 0x40190005 / 84.62% Not supported

333.333 kbps 0x401E0003 / 88.89% 0xC01E0004 / 88.89%

615.384 kbps 0x40190002 / 84.62% 0xC01B0002 / 86.67%

666.667 kbps 0x401E0001 / 88.89% Not supported

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 127

4.3.5 CAN Messages Filter Function

It is possible to filter the received CAN messages by hardware. The configurations of the filter are passed
to the API function UcanInitCan() using the parameters dwAMR_p and dwACR_p. Using the API
function UcanInitCanEx() or UcanInitCanEx2() the parameters m_dwAMR and m_dwACR_p of structure
tUcanInitCanParam are used to configure the filter. It is also possible to change these values later using
the function UcanSetAcceptance() or UcanSetAcceptanceEx().

The following mechanism is used for filtration:

reveived message bit acceptance code bit acceptance mask bit

XOR

OR

NOT

AND

bit 0

bit 1

... .
bit 10 or 28

logic 0: message not accepted
logic 1: message accepted

Figure 45: CAN message filter mechanism used within the USB-CANmodul

Table 32: CAN message filter mechanism for only accepted CAN messages

Acceptance
mask bit

(AMR)

Acceptance
code bit
(ACR)

Bit of received
message for being

accepted

0 0 0

0 1 1

1 0 Don’t care

1 1 Don’t care

The bits of AMR / ACR corresponds to the message bits for 11-bit CAN-Identifier as follows:

Bit 31 30 … 21 20 19 … 16 15 14 … 8 7 6 … 0

ACR



Bit 31 30 … 21 20 19 … 16 15 14 … 8 7 6 … 0

AMR



Bit 10 9 … 0 Bit 7 6 … 0 Bit 7 6 … 0

11-Bit CAN-ID
R
T
R

reserved Data byte 0 Data byte 1

Figure 46: CAN message filter corresponding bits for 11-bit CAN-ID

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 128

The bits of AMR / ACR corresponds to the message bits for 29-bit CAN-Identifier as follows:

Bit 31 30 … 3 2 1 0

ACR



Bit 31 30 … 3 2 1 0

AMR



Bit 28 27 … 0

29-Bit CAN-ID
R
T
R

reserved

Figure 47: CAN message filter corresponding bits for 29-bit CAN-ID

The macros USBCAN_CALCULATE_AMR() and USBCAN_CALCULATE_ACR() may be used to
calculate the filter values. The data bytes cannot be passed to these macros.

Macro: USBCAN_CALCULATE_AMR
USBCAN_CALCULATE_ACR

Syntax: USBCAN_CALCULATE_AMR(extended,from_id,to_id,rtr_only,rtr_too)

USBCAN_CALCULATE_ACR(extended,from_id,to_id,rtr_only,rtr_too)

Description: The macro USBCAN_CALCULATE_AMR() calculates the for acceptance mask
register (AMR) macro USBCAN_CALCULATE_ACR() calculates the
acceptance code register (ACR) to be used for receiving CAN messages with
the given parameters.

Note: Always pass the same values of all parameters of macro
USBCAN_CALCULATE_AMR() as for macro USBCAN_CALCULATE_ACR().

Parameter:

 extended: If non-zero the parameters from_id and to_id are specifying 29-bit CAN-
Identifier. Otherwise, they are specifying 11-bit CAN-Identifier.

 from_id: Specifies the start of the range of CAN-Identifier to be received.

 to_id: Specifies the end of the range of CAN-Identifier to be received (including this
identifier).

 rtr_only: If non-zero then only RTR frames are received and the parameter rtr_too is
ignored.

 rtr_too: If non-zero then data frames and RTR frames are received. Otherwise only
data frames are received.

Return: USBCAN_CALCULATE_AMR(): the value for acceptance mask register (AMR)
USBCAN_CALCULATE_ACR(): the value for acceptance code register (ACR)

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 129

Example:

tUcanHandle UcanHandle;

UCANRET bRet;

 ...

 // initialize the hardware

 bRet = UcanInitHardware (&UcanHandle, 0, NULL);

 ...

 // preset init parameters

 // filters 11-bit CAN messages with ID 0x600 to 0x67F,

 // RTR frames not important

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_CALCULATE_AMR (0,0x600,0x67F,0,0);

 InitParam.m_dwACR = USBCAN_CALCULATE_ACR (0,0x600,0x67F,0,0);

 InitParam.m_dwBaudrate = USBCAN_BAUDEX_G4_125kBit;

 InitParam.m_wNrOfRxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 InitParam.m_wNrOfTxBufferEntries = USBCAN_DEFAULT_BUFFER_ENTRIES;

 // initialize CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

Use the following two constants for receiving all CAN messages transferred over the CAN bus:

Table 33: Constants for acceptance filter for receiving all CAN messages

Name Value Description

USBCAN_AMR_ALL 0xFFFFFFFF Value for AMR for receiving all CAN messages.

USBCAN_ACR_ALL 0x00000000 Value for AMR for receiving all CAN messages.

Example: refer to example on page 123.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 130

4.3.6 Using multiple CAN-channels

The USB-CANmodul2 has two CAN-channels. This device is called “logical device” in this sub-section.
However, the USB-CANmodul16 has 16 CAN-channels which are divided into 8 logical devices with 2
channels each. In other words, each logical device provides 2 CAN-channels, which need to get
initialized. Refer to section 4.3.8 for more information.

An USB-CANmodul8 behaves like an USB-CANmodul16 but includes only 4 logical devices and 8 CAN-
channels. USB CANmodul2 has only one logical device and 2 CAN-channels.

Both CAN-channels of each logical device have to be initialized by using the API function
UcanInitCanEx2().

There are five constants to select a CAN-channel:

Table 34: Constants for CAN-channel selection

Name Value Description

USBCAN_CHANNEL_CH0 0 first CAN channel

USBCAN_CHANNEL_CH1 1 second CAN channel

USBCAN_CHANNEL_ANY 255 any CAN channel

USBCAN_CHANNEL_CAN1 0 first CAN channel

USBCAN_CHANNEL_CAN2 1 second CAN channel

Constant USBCAN_CHANNEL_ANY can only be used with functions UcanReadCanMsgEx() and
UcanGetMsgPending().

In function UcanReadCanMsgEx() it indicates that the function shall examine, from which CAN-channel
the next CAN message is received from. If this function returns at least one valid CAN message (refer
to macro USBCAN_CHECK_VALID_RXCANMSG()), then it also passes the respective CAN-channel
to the calling function: USBCAN_CHANNEL_CH0 or USBCAN_CHANNEL_CH1 (refer to function
UcanReadCanMsgEx() for detailed information).

In function UcanGetMsgPending() it indicates that the function shall return the pending CAN messages
of both CAN channels of a logical device (first and the second one).

The constants USBCAN_CHANNEL_CAN1 and USBCAN_CHANNEL_CAN2 have the same values as
USBCAN_CHANNEL_CH0 and USBCAN_CHANNEL_CH1. They were defined because on top of the
housing of USB-CANmodul2, the first channel was named CAN1 but in the software the first channel is
named CH0.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 131

4.3.7 Using the Callback Functions

The DLL library provides three types of callback functions. The Connect Control Callback Function
informs about Plug & Play events for the USB-CANmodul (e.g.: new USB-CANmodul connected to the
PC; or disconnected from the PC; ...). The second type announces events, which occur during the work
with the USB-CANmodul (e.g.: CAN message receive; error status changed; ... – refer to
section 4.3.7.2).

An extended format (support of multiple CAN channels, support of a user-defined argument) exists for
both types of the callback function named above.

Note:

The "Connect Control callback" function has a different format than callback functions for the other
events. Make sure to use the correct format in your application. It is not possible to use the very same
implementation for both types of callback function!

Also, the format of the extended callback functions differs from the format of the standard functions.
Make sure to use the extended callback functions if the extended API functions are used. Access
violations will occur during runtime otherwise!

Also note that the callback functions are declared as PUBLIC, which is defined as “__stdcall” in Microsoft
Visual Studio.

The third type of callback functions is the Enumeration Callback Function. It informs about found
USB-CANmodul devices calling the API function UcanEnumerateHardware().

4.3.7.1 Connect Control Callback Function

Function: AppConnectControlCallback

Syntax: void PUBLIC AppConnectControl (

 BYTE bEvent_p,

 DWORD dwParam_p);

Description: This callback function informs the application if a new USB-CANmodul is
connected to the PC, or a connected USB-CANmodul has been
disconnected. This callback function is registered with the API function
UcanInitHwConnectControl() and may have another name within the
application as named above.

Parameter:

 bEvent_p: Event which occurred (refer to Table 35).

 dwParam_p: Additional parameter depending on the occurred event (refer to
Table 35).

Table 35: Constants for the event informed with the connect control callback functions

Name Value Description Value for bParam_p

USBCAN_EVENT_CONNECT 0x06
A new logical USB-CANmodul is
connected.

Don’t care

USBCAN_EVENT_DISCONNECT 0x07
An USB-CANmodul is disconnected
which was not used by the
application.

Don’t care

USBCAN_EVENT_FATALDISCON 0x08

An USB-CANmodul in either
HW_INIT or CAN_INIT state is
disconnected from the computer.
Data loss is possible.

The USBCAN handle
of the disconnected
module. This handle
can no longer be used.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 132

Function: AppConnectControlCallbackEx

Syntax: void PUBLIC AppConnectControlEx (

 DWORD dwEvent_p,

 DWORD dwParam_p,

 void* pArg_p);

Description: This callback function informs the application if a new USB-CANmodul is
connected to the PC, or a connected USB-CANmodul has been
disconnected. This callback function is registered with the API function
UcanInitHwConnectControlEx() and may have another name within the
application as named above.

Parameter:

 dwEvent_p: Event which occurred (refer to Table 35).

 dwParam_p: Additional parameter depending on the occurred event (refer to
Table 35).

 pArg_p: Additional user-parameter, which was passed to function
UcanInitHwConnectControlEx() as parameter pCallbackArg_p.

Example: refer to example on page 135.

Note:

If it is necessary that an application shall reconnect to a previous disconnected logical module, then the
application firstly has to call the API function UcanDeinitHardware() after the received event
USBCAN_EVENT_FATALDISCON. With the following event USBCAN_EVENT_CONNECT the logical
module has to be initialized again using one of the API functions UcanInitHardware(),
UcanInitHardwareEx(), UcanInitHardwareEx2() or UcanEnumerateHardware() followed by
UcanInitCanEx2().

Before the application can recognize the fatal disconnect any CAN messages may be lost. If so, the
transmissions shall be repeated after the reconnection (depending on the used CAN protocol stack
and/or requirements of the application).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 133

4.3.7.2 Event Callback Function

Function: AppEventCallback

Syntax: void PUBLIC AppEventCallback (tUcanHandle UcanHandle_p

 BYTE bEvent_p);

Description: This callback function informs the application if an event occurred on an
initialized USB-CANmodul. This callback function is registered with the
API function UcanInitHardware() and may have another name within the
application as named above.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardware().

 bEvent_p: Event which occurred (refer to Table 36).

Table 36: Constants for the event informed with the event callback functions

Name Value Description Value for bChannel_p

USBCAN_EVENT_INITHW 0x00
The USB-CANmodul is
initialized successfully.

Don’t care

USBCAN_EVENT_INITCAN 0x01
The CAN interface is initialized
successfully.

The CAN-channel that was
initialized.

USBCAN_EVENT_RECEIVE 0x02
At least one CAN message is
received. May also be more
than one CAN message.

The CAN-channel that
received the CAN message(s).

USBCAN_EVENT_STATUS 0x03
The error status at the
USB-CANmodul has changed.

The CAN-channel, which CAN
error state has been changed.

USBCAN_EVENT_DEINITCAN 0x04
The CAN interface is shut
down.

The CAN-channel that is being
shut down.

USBCAN_EVENT_DEINITHW 0x05
The USB-CANmodul is
completely shut down.

Don’t care

USBCAN_EVENT_...
…USBBUS_ERROR

0x10
An USB bus error was
detected (e.g. STALL error or
XACT error)

Don’t care

USBCAN_EVENT_...
…RECONNECT

0x11
The USB-CANmodul is
successfully reconnected by
the Auto Reconnect feature

Don’t care

Note:

If an USB bus error has occurred (event USBCAN_EVENT_USBBUS_ERROR) and the Auto Reconnect
feature is activated, then the USBCAN.DLL automatically performs a re-enumeration of the
USB-CANmodul (refer to section 4.2.1 for configuration and detailed information).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 134

Function: AppEventCallbackEx

Syntax: void PUBLIC AppEventCallbackEx (tUcanHandle UcanHandle_p

 DWORD dwEvent_p,

 BYTE bChannel_p,

 void* pArg_p);

Description: This callback function informs the application if an event occurred on an
initialized USB-CANmodul. This callback function is registered with the
API function UcanInitHardwareEx() or UcanInitHardwareEx2() as well as
UcanEnumerateHardware() and may have another name within the
application as named above.

Parameter:

 UcanHandle_p: USBCAN handle that was received with the function
UcanInitHardwareEx() or UcanInitHardwareEx2() as well as
UcanEnumerateHardware().

 dwEvent_p: Event which occurred (refer to Table 36).

 bChannel_p: CAN channel, which is to be used.

USBCAN_CHANNEL_CH0 for CAN channel 0
USBCAN_CHANNEL_CH1 for CAN channel 1
USBCAN_CHANNEL_ANY for don’t care (refer to Table 36)

 pArg_p: Additional user-parameter, which was passed to function
UcanInitHardwareEx() or UcanInitHardwareEx2() with parameter
pCallbackArg_p as well as UcanEnumerateHardware() with parameter
m_pCallbackArg of structure tUcanHardwareInitInfo.

Note:

The callback functions should not call the API functions of the DLL directly. This can lead to undesired
results. The best method for using the callback functions is to wait for an event in the main program (e.g.
with the Win32 function WaitForMultipleObjects()) and then to call the API functions from there after the
event has occurred. The callback functions only shall signal the corresponding event (e.g. with the
Win32 function SetEvent()).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 135

Example:

tUcanHandle UcanHandle_g;

tCanMsgStruct aCanRxMsg_g[100];

HANDLE ahWaitHandles_g[8]; // CONNECT, RECV, STATUS, ...

tUcanInitCanParam InitParam_g;

...

void main (void)

{

UCANRET bRet;

BYTE bChannel;

DWORD dwRxCount;

 ...

 // initilizes the first callback function

 bRet = UcanInitHwConnectControlEx (AppConnectControlCallbackEx, NULL);

 if (bRet == USBCAN_SUCCESSFUL)

 {

 // wait for event

 switch (WaitForMultipleObjects(8, &ahWaitHandles_g[0], FALSE, INFINITE))

 {

 case CONNECT:

 // initialize USB-CANmodul with USBCAN_ANY_MODULE and

 // register second callback function

 bRet = UcanInitHardwareEx (&UcanHandle_g, USBCAN_ANY_MODULE,

 AppEventCallbackEx, NULL);

 ...

 // initialize CAN interface

 bRet = UcanInitCanEx2 (UcanHandle_g, USBCAN_CHANNEL_CH0,

 &InitParam_g);

 ...

 break;

 case RECV:

 // read CAN message

 bChannel = USBCAN_CHANNEL_CH0;

 dwRxCount = 100;

 bRet = UcanReadCanMsgEx (UcanHandle_g, &bChannel,

 &aCanRxMsg_g, &dwRxCount);

 ...

 break;

 }

 }

 ...

}

void PUBLIC AppConnectControlCallbackEx (DWORD dwEvent_p, DWORD dwParam_p,

 void* pArg_p)

{

UCANRET bRet;

 // which event did occur?

 switch (dwEvent_p)

 {

 case USBCAN_EVENT_CONNECT: // new USB-CANmodul connected

 // Send signal to main function, so that the USB-CANmodul

 SetEvent(ahWaitHandles_g[CONNECT]);

 ...

 break;

 case USBCAN_EVENT_DISCONNECT: // USB-CANmodul disconnected

 ...

 break;

 }

}

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 136

void PUBLIC AppEventCallbackEx (tUcanHandle UcanHandle_p,

 DWORD dwEvent_p, BYTE bChannel_p, void* pArg_p)

{

 // what event appeared?

 switch (dwEvent_p)

 {

 case USBCAN_EVENT_RECEIVE: // CAN message received

 // signal that CAN message(s) can be read

 SetEvent(ahWaitHandles_g[RECV]);

 break;

 case USBCAN_EVENT_STATUS: // changes error status

 // signal that the CAN status can be read

 SetEvent(ahWaitHandles_g[STATUS]);

 break;

 ...

 }

}

4.3.7.3 Enumeration Callback Function

Function: AppEnumCallback

Syntax: void PUBLIC AppEnumCallback (DWORD dwIndex_p

 BOOL fIsUsed_p,

 tUcanHardwareInfoEx* pHwInfoEx_p,

 tUcanHardwareInitInfo* pInitInfo_p

 void* pArg_p);

Description: This callback function is called from the context of the function
UcanEnumerateHardware() when a connected USB-CANmodul is found
which matches to the filter parameters passed to
UcanEnumerateHardware(). It is registered using the function
UcanEnumerateHardware() and may have a different name within the
application.

Parameter:

 dwIndex_p: Ongoing index which is incremented by the value 1 for each found
USB-CANmodul. The value is 0 for the first call of this callback function.

 fIsUsed_p: This flag is TRUE when the found USB-CANmodul is currently
exclusively used by another application. This parameter only can be
TRUE if the function UcanEnumerateHardware() was called with the
parameter fEnumUsedDevs_p = TRUE. An USB-CANmodul cannot be
used by the own application when it is exclusively used by another
application (means the network driver is not used).

 pHwInfoEx_p: Pointer to a variable of the structure of type tUcanHardwareInfoEx
holding the hardware information of the found USB-CANmodul.

 pInitInfo_p: Pointer to a variable of the structure of type tUcanHardwareInitInfo. This
structure controls the further process of the function
UcanEnumerateHardware(). This structure is detailed explained below.
The user has to fill out this structure before returning from the callback
function.

 pArg_p: Additional user-parameter, which was passed to function
UcanEnumerateHardware() with parameter pCallbackArg_p.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 137

typedef struct _tUcanHardwareInitInfo

{

 DWORD m_dwSize;

 BOOL m_fDoInitialize;

 tUcanHandle* m_pUcanHandle;

 tCallbackFktEx m_fpCallbackFktEx;

 void* m_pCallbackArg;

 BOOL m_fTryNext;

}

tUcanHardwareInitInfo;

Parameter: [Direction]

 m_dwSize: [OUT] Size of this structure in bytes. This parameter is set it to the
value sizeof(tUcanHardwareInitInfo) by the DLL before
calling the Enumeration Callback Function.

 m_fDoInitialize: [IN] Set to TRUE if the DLL shall automatically initialize the found
USB-CANmodul. In this case the parameters
m_pUcanHandle, m_fpCallbackFktEx and m_pCallbackArg
must be filled out.

 m_pUcanHandle: [IN] Pointer to a variable of type tUcanHandle to receive the
USBCAN handle of the found and automatically initialized
USB-CANmodul. This parameter must not be NULL if
m_fDoInitialize is set to TRUE.

 m_fpCallbackFktEx: [IN] Pointer to an event callback function (refer to
AppEventCallbackEx()) used for the found and automatically
initialized USB-CANmodul. This parameter may be NULL.

 m_pCallbackArg: [IN] User-specific parameter that is passed to the event callback
function as well. This parameter may be NULL.

 m_fTryNext: [IN] Set to TRUE if the function UcanEnumerateHardware() shall
try to find further USB-CANmodul devices. Otherwise, it
stops the enumeration process.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 138

Example:

#define APP_MAX_DEVICES 4 // <-- for example only enumerate up to 4 modules

tUcanHandle aUcanHandles_g[APP_MAX_DEVICES];

DWORD dwFoundModules_g;

int main (void)

{

UCANRET bRet;

tUcanInitCanParam InitParam;

 ...

 // enumerate connected USB-CANmodul devices

 dwFoundModules_g = UcanEnumerateHardware (AppEnumCallback, (void*) &InitParam,

 TRUE, // also find modules, which are currently used by other apps

 0, ~0, // no limitations for the device number

 0, ~0, // no limitations for the serial number

 0, ~0); // no limitations for the Product-Code

 // beginning from here all auto-initialized modules can be used

 if (dwFoundModules_g > 0)

 {

 // preset init parameters

 memset (&InitParam, 0, sizeof (InitParam));

 InitParam.m_dwSize = sizeof (InitParam);

 InitParam.m_bMode = kUcanModeNormal;

 InitParam.m_bBTR0 = HIBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bBTR1 = LOBYTE (USBCAN_BAUD_USE_BTREX);

 InitParam.m_bOCR = USBCAN_OCR_DEFAULT;

 InitParam.m_dwAMR = USBCAN_AMR_ALL;

 InitParam.m_dwACR = USBCAN_ACR_ALL;

 InitParam.m_dwBaudrate = USBCAN_BAUDEX_G4_125kBit;

 // initialize the first channel of found CAN-channel

 bRet = UcanInitCanEx2 (UcanHandle, USBCAN_CHANNEL_CH0, &InitParam);

 ...

 }

 ...

}

void PUBLIC AppEnumCallback (DWORD dwIndex_p, BOOL fIsUsed_p,

 tUcanHardwareInfoEx* pHwInfoEx_p, tUcanHardwareInitInfo* pInitInfo_p,

 void* pArg_p)

{

 if (fIsUsed_p != FALSE)

 {

 printf (“module %d is already used\n”, pHwInfoEx_p->m_dwSerialNr);

 }

 else if (dwIndex_p < APP_MAX_DEVICES)

 {

 printf (“initialize module %d...\n”, pHwInfoEx_p->m_dwSerialNr);

 // fill out the parameters for auto-initializing

 pInitInfo_p->m_fDoInitialize = TRUE;

 pInitInfo_p->m_pUcanHandle = &aUcanHandles_g[dwIndex_p];

 pInitInfo_p->m_fpCallbackFktEx = AppEventCallbackEx;

 pInitInfo_p->m_pCallbackArg = (void*) &aUcanHandles_g[dwIndex_p];

 // enumerate further modules

 pInitInfo_p->m_fTryNext = TRUE;

 }

 else

 {

 // do not enumerate further modules

 pInitInfo_p->m_fTryNext = FALSE;

 }

}

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 139

4.3.8 Assignment of CAN-channels of Multiport devices

All Multiport devices are divided to “logical devices” which does have two CAN-channels each. The
USB-CANmodul8 has 4 logical devices and USB-CANmodul16 has 8 logical devices. Each logical
device is pre-configured with an own device number. We recommend to keep this pre-configuration.

Additionally, the serial number of each logical device (stored to the internal EEPROM) is calculated by
the following formula:

𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐸𝐸𝑃𝑅𝑂𝑀 = (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 𝐿𝑜𝑔𝑖𝑐𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒𝑁𝑢𝑚𝑏𝑒𝑟

The serial number stored to the internal EEROM of a logical device is unchangeable. Find the Barcode
Serial Number at the sticker at the backend of the table case or 19’’ rack-mounted case (refer to
Figure 11 or Figure 15). Table 37 lists all device and serial numbers of each logical device of an
USB-CANmodul8 or USB-CANmodul16.

Table 37: Assignment of CAN-channels of Multiport devices

 Parameters

CAN
channel
on the
front
panel

Logical
device

number

Pre-
defined
device
number

CAN
channel

of
logical
device

Serial number in EEPROM

Example for
serial number in
EEPROM using
Barcode serial

number = 123456

0 1 0 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 1 123456001

1 1 0 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 1 123456001

2 2 1 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 2 123456002

3 2 1 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 2 123456002

4 3 2 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 3 123456003

5 3 2 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 3 123456003

6 4 3 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 4 123456004

7 4 3 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 4 123456004

8 5 4 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 5 123456005

9 5 4 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 5 123456005

10 6 5 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 6 123456006

11 6 5 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 6 123456006

12 7 6 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 7 123456007

13 7 6 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 7 123456007

14 8 7 0 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 8 123456008

15 8 7 1 (𝑆𝑒𝑟𝑖𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝐵𝑎𝑟𝑐𝑜𝑑𝑒 ∗ 1000) + 8 123456008

To initialize an logical device use the API function UcanEnumerateHardware() or UcanInitHardware() or
UcanInitHardwareEx() or UcanInitHardwareEx2(). Refer to the Example 3 on page 66 or to the Example
on page 69. These examples are using the serial number to initialize logical devices of a Multiport
device. Call UcanInitHardwareEx() or UcanInitHardwareEx2() in a loop to initialize all logical devices of
a Multiport device (if needed).

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 140

For each logical device the API function UcanInitCanEx2() needs to be called to initialize the CAN-
channel 0 and/or 1 of the logical device. Use the parameters listed in Table 37 for initializing the correct
CAN-channel of the device.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 141

5 Software support for Linux OS

For the Linux operating system a Socket-CAN driver is being offered. Please ask at the help desk
support for the respective article number or refer to the download-page of the SYS TEC homepage:
www.systec-electronic.com.

 Installation of SocketCAN driver for USB-CANmodul series

Please download the Linux SocketCAN driver for the SYS TEC USB-CANmodul from the SYS TEC
homepage: Linux SocketCAN Driver for USB-CANmodul series. After the download has finished open
a terminal window and switch to the folder where the driver was saved. The TAR archive must be
extracted with the following command:

$: tar –xjvf systec_can-V1.0.3.tar.bz2

Figure 48: Unzip “TAR” archive of SocketCAN driver

A folder named “systec-can-master” will be created during the unpacking process (see Figure 49). Now
we change into the folder “systec-can-master” and open the file “README.md”. This file contains all
necessary information to build and install the SocketCAN driver and firmware for the USB-CANmodul.
The following explanations are only intended to explain the basic steps:

1. Switch into folder “systec-can-master” and execute the command “make” to build the
SocketCAN driver

cd systec-can-master

…/systec-can-master$: make

2. Load the basic CAN diver

$: sudo modprobe can_raw

$: sudo modprobe can_dev

file:///C:/Users/dietzsch/AppData/Roaming/Microsoft/Word/www.systec-electronic.com
https://www.systec-electronic.com/fileadmin/Redakteur/Unternehmen/Support/Downloadbereich/Treiber/systec_can-V1.0.3.tar.bz2

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 142

Figure 49: Unziped folder of SYS TEC SocketCAN driver

3. Install the firmware for the USB-CANmodul

$: sudo make firmware install

4. Load the USB-CANmodul driver

$: sudo insmod systec_can.ko

5. Installing the driver and firmware system-wide

$: sudo make module_install

$: sudo make firmware_install

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 143

 Installation of CANinterpreter Lite

Please download the Linux version of CANinterpreter Lite from the SYS TEC homepage or copy the
ZIP file from the installation directory under Windows to the Linux system. Afterwards the ZIP archive
must be unzipped to a folder of your choice where you have appropriate user rights.

Figure 50: Syntax of “unzip” command for CANinterpreter Lite archive

In this case the destination folder .”.../opt/CANinterpreter Lite” is used to unzip the program.

Figure 51: Destination folder of unzipped CANinterpreter

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 144

 Configure the SocketCAN interface for USB-CANmodul

Before the USB-CANmodul in combination with the “CANinterpreter Lite” tool can be used it is necessary
to configure the SocketCAN interface for the SYS TEC USB-CANmodul so that it can be selected in the
“CANinterpreter lite”. The SocketCAN driver must be already installed so that we can execute the next
steps. At first, we have to connect the USB-CANmodul to a free USB interface at the PC. In order to
check that the module was recognized the command interface of “ip link” must be used. The following
steps are necessary to configure and activate the SocketCAN interface.

1. Connect the USB-CANmodul to the PC

2. Open a terminal window and type “ip link”:

$: ip link

 Figure 52: Command “ip link” to show the SocketCAN interfaces

3. SocketCAN interface “canx” where x is the number of the SocketCAN interface must be shown
in the terminal window

4. Configure type and bitrate (for example 125kBit/s) of the SocketCAN interface with super user
right’s

$: sudo ip link set can0 type can bitrate 125000

Figure 53: Command to configure can0 interface type and bitrate

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 145

5. Increase the size of the TX send buffer for the SocketCAN interface

$: sudo ip link set can0 txqueuelen 1000

Figure 54: Command to configure can0 TX queue length

6. Start the SocketCAN interface to set the USB-CANmodul into “online mode” (the red status

led on the USB-CANmodul must go out after the command was successfully executed)

$: sudo ip link set can0 up

Figure 55: Command to set the can0 interface into “online mode”

For more commands to work with the SocketCAN interface please check the file “README.md” in the
SocketCAN driver or open the following links:

➢ SocketCAN - The Linux Kernel Archives
➢ ip link - Linux manual page

https://www.kernel.org/doc/Documentation/networking/can.txt
https://man7.org/linux/man-pages/man8/ip-link.8.html

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 146

 Start of CANinterpreter Lite

After the preparations have been completed, the CANinterpreter Lite can be started and connected to
the USB-CANmodul. In the installation directory of the CANinterpreter Lite is the file named “cin.sh”.
This file is a shell script which sets the needed paths for libraries and the QT environment. It must be
checked that the file “cin.sh” has execution rights. It is possible to create a desktop shortcut launcher
for the “cin.sh” file or the shell script can be executed from the terminal window.

Figure 56: Main window of the CANinterpreter Lite

After the execution of the shell script the main window of the CANinterpreter Lite should be seen. Now
the connection interface must be selected to establish the connection between the SocketCAN interface
and the CANinterpreter Lite.

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 147

5.4.1 Configure and Connect the CAN interface

From the main menu the entry “Connection -> CAN Interface Settings” must be selected to open the
configuration dialog for the CAN Interface Overview shown in Figure 57.

Figure 57: CAN Interface Overview dialog

In the pull-down menu “CAN device” the previously configured SocketCAN interface should be visible.
The baudrate value should be also visible and shows the configured baudrate. The baudrate can only
be changed via the “ip link” interface because super user rights are necessary.

Figure 58: Added SocketCAN interface

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 148

Now the desired CAN interface must be selected from window CAN device” and the button “Add new
interface” must be clicked to add the interface to the “Saved interfaces” list which is shown in Figure 58.

To establish the connection the button “Connect” or the entry “Connection -> Connect” from the main
menu must be clicked. The connection state will be shown in the lower right corner of the main window.

Figure 59: CANinterpreter Lite connected to SocketCAN interface

The connection should be closed before the CANinterpreter is closed. To detach the connection the
button “Disconnect” or the entry “Connection -> Disconnect” from the main menu must be clicked.

 CANinterpreter User Manual

The user manual can be opened directly from the main menu by the entry “Help -> Manual”. Here can
be found more detailed information about the usage and the functionality of the CANinterpreter Lite.

 CANinterpreter Full Version

Sometimes it could be helpful to get the full version of the CANinterpreter with CANopen Plugin, File
Logger, support of other CAN interfaces and Scripting interpreter. A license and a dongle are required
for the full version of CANinterpreter. Please contact our sales department sales@systec-electronic.com
for further information.

mailto:sales@systec-electronic.com

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 149

6 Known issues

- Using VMware under Windows OS as host there can cause problems when connecting the
USB-CANmodul to the guest OS. Until now we have detected problems on Renesas USB 3.0
ports. Furthermore, the establishing of the connect can fail when using the USB-CANnetwork
driver on the host OS

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 150

Index

A

API Functions .. 59

B

Blinking cycles ... 30
Borland C++ Builder 56

C

CAN Acceptance Filter90, 91, 127
CAN baud rate89, 90, 114
CAN baud rate user-defined 126
CAN cable parameters 26
CAN Channel ... 130
CAN connector .. 25
CAN Error Counters 99
CAN Error Status 87, 89
CAN high-speed transceiver 25
CAN low speed .. 103
CAN low-speed transceiver 27
CAN port ..53, 83, 103
CAN single wire ... 103
CAN single-wire transceiver 27
CAN_INIT .. 56
CANinterpreter44, 48, 54
Connect Control Callback63, 64, 131
Cyclic CAN messages 81, 100

D

DB-9 plug ... 25, 44
Debug log file ... 49, 59
Demo ... 10, 56
Device Manager .. 41
Device Number .. 43, 71
DLL .. 10, 56
DLL_INIT ... 56

E

EMC ... 12
Enumeration .. 65
Enumeration Callback 65, 136
Error Codes ... 109
Event Callback67, 68, 133
Expansion Port 28, 53, 82, 107

F

File Structure ... 52
Firmware performance 53
Firmware Version .. 63
Function

AppConnectControlCallback 131
AppConnectControlCallbackEx 132
AppEnumCallback .. 136
AppEventCallback .. 133
AppEventCallbackEx 134
UcanConfigUserPort 107
UcanDefineCyclicCanMsg 101

UcanDeinitCan ... 77
UcanDeinitCanEx ... 77
UcanDeinitHardware .. 70
UcanDeinitHwConnectControl 64
UcanEnableCyclicCanMsg 103
UcanEnumerateHardware 65
UcanGetCanErrorCounter 99
UcanGetFwVersion .. 63
UcanGetHardwareInfo 78
UcanGetHardwareInfoEx2 79
UcanGetModuleTime .. 70
UcanGetMsgCountInfo 86
UcanGetMsgCountInfoEx 86
UcanGetMsgPending 98
UcanGetStatus ... 87
UcanGetStatusEx ... 89
UcanGetVersion ... 61
UcanGetVersionEx ... 61
UcanInitCan .. 71
UcanInitCanEx.. 72
UcanInitCanEx2.. 73
UcanInitHardware ... 67
UcanInitHardwareEx ... 68
UcanInitHardwareEx2 69
UcanInitHwConnectControl 63
UcanInitHwConnectControlEx 64
UcanReadCanMsg ... 92
UcanReadCanMsgEx 94
UcanReadCanPort ... 105
UcanReadCanPortEx 106
UcanReadCyclicCanMsg 102
UcanReadUserPort .. 108
UcanReadUserPortEx 108
UcanResetCan ... 74
UcanResetCanEx ... 75
UcanSetAcceptance ... 90
UcanSetAcceptanceEx 91
UcanSetBaudrate ... 89
UcanSetBaudrateEx ... 90
UcanSetDebugMode .. 59
UcanSetDeviceNr ... 71
UcanSetTxTimeout ... 74
UcanWriteCanMsg ... 95
UcanWriteCanMsgEx 96
UcanWriteCanPort .. 104
UcanWriteCanPortEx 105
UcanWriteUserPort ... 107

G

General API functions 59
Getting Started .. 32

H

Hardware .. 11
Hardware Assistant 38
Hardware Information 78, 79
High Resolution Time Stamp 73
HW_INIT ... 56

I

Installation ... 33

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 151

Introduction .. 10

J

Jumper ... 26

L

LabView ... 10
LIB ... 56
Linux .. 141
Listen Only Mode ... 73

M

Macro ...81, 111, 128
USBCAN_CALCULATE_ACR 128
USBCAN_CALCULATE_AMR 128
USBCAN_CHECK_ERROR 112
USBCAN_CHECK_ERROR_CMD 113
USBCAN_CHECK_IS_G1 84
USBCAN_CHECK_IS_G2 84
USBCAN_CHECK_IS_G3 84
USBCAN_CHECK_IS_G4 84
USBCAN_CHECK_IS_SYSWORXX 84
USBCAN_CHECK_SUPPORT_CYCLIC_MSG 81
USBCAN_CHECK_SUPPORT_RBCAN_PORT

 ... 83
USBCAN_CHECK_SUPPORT_RBUSER_PORT

 ... 83
USBCAN_CHECK_SUPPORT_TERM_RESISTO

R ... 82
USBCAN_CHECK_SUPPORT_TWO_CHANNEL

 ... 82
USBCAN_CHECK_SUPPORT_UCANNET 83
USBCAN_CHECK_SUPPORT_USER_PORT . 82
USBCAN_CHECK_TX_NOTALL 112
USBCAN_CHECK_TX_OK 111
USBCAN_CHECK_TX_SUCCESS 112
USBCAN_CHECK_VALID_RXCANMSG 111
USBCAN_CHECK_WARNING 112

Message Counters .. 86
Module Time Stamp 70

N

Network Driver ... 50, 83

P

Parallel Mode ... 100
Pending CAN messages 98
Plug & Play .. 10, 131
Power LED... 30
Product Code65, 80, 81

R

Reset CAN Channel 75
Reset CAN Controller 74
Reset Flags ... 75

S

Sequential Mode ... 100
Socket CAN .. 141
Software .. 52
Software States ... 56
Status LED .. 30, 87
Status Timeout .. 88
Structure

tCanMsgStruct .. 92
tStatusStruct ... 87
tUcanChannelInfo ... 80
tUcanHardwareInfo ... 78
tUcanHardwareInfoEx 79
tUcanHardwareInitInfo 137
tUcanInitCanParam .. 72
tUcanMsgCountInfo .. 86

Supply Voltage .. 25
System requirements 32
sysWORXX 13, 16, 84

T

Technical Data 13, 15, 17, 20, 23
Termination resistor 25, 27, 44, 82, 104
Traffic LED .. 30
TX Echo .. 73
TX Timeout ... 74

U

UCANRET ... 109
Uninstallation .. 50
Update .. 39
USB ... 10
USB-CANmodul Control 53
USB-CANmodul1 13, 121
USB-CANmodul1 C 15, 124
USB-CANmodul16 .. 22
USB-CANmodul2 16, 121
USB-CANmodul8 .. 19

V

Verification .. 41
Version .. 61

W

Watchdog Timeout .. 88

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 152

Document: System Manual USB-CANmodul

Document Number: L-487e, Version 2.09, Edition July 2024

Do you have any suggestions for improving this manual?

Have you found any mistakes in this manual? Page

Sent from:

Customer number:

Name:

Company:

Address:

Send to: SYS TEC electronic AG

Am Windrad 2
D - 08468 Heinsdorfergrund
GERMANY
Fax: +49 (0) 37 65 / 38600-4100
Email: info@systec-electronic.com

mailto:info@systec-electronic.com

 System Manual USB-CANmodul

 © SYSTEC electronic AG 2024 L-487e Page 153

	Document History
	1 Introduction
	2 Hardware Description
	2.1 Hardware Variants
	2.1.1 The USB-CANmodul1
	2.1.1.1 USB-CANmodul1 Revision 01
	1.1.1.1
	2.1.1.2 USB-CANmodul1 C

	1.1.1
	1.1.1
	2.1.2 The USB-CANmodul2
	2.1.3 The USB-CANmodul8
	2.1.4 The USB-CANmodul16
	2.1.5 Legacy devices

	2.2 CAN connector
	2.3 Termination resistor for high-speed CAN Transceiver
	2.4 CAN-port with low-speed CAN Transceiver
	2.5 Expansion Port
	2.6 LEDs on the USB-CANmodul

	3 Getting Started
	3.1 System requirements
	3.2 Installation of the driver under Windows-OS
	3.3 Updating an existing installation
	3.4 Verifying the Device Installation
	3.4.1 Troubleshooting for device installation

	3.5 Device Number Allocation
	3.6 Connection to a CAN Network
	3.7 Starting CANinterpreter Lite for USB-CANmodul
	3.8 Creating a debug file from DLL
	3.9 Activation of the network driver
	3.10 Completely uninstall the driver

	4 Software Support for Windows OS
	4.1 File Structure
	4.2 Tools for the USB-CANmodul
	4.2.1 USB-CANmodul Control for Windows
	4.2.2 CANinterpreter Lite for Windows

	4.3 Description of the USBCAN32.DLL / USBCAN64.DLL
	4.3.1 The concept of the DLL
	4.3.2 API Functions of the DLL
	4.3.2.1 General API functions
	4.3.2.2 API Functions for automatic transmission
	4.3.2.3 API Functions for the CAN port
	4.3.2.4 API Functions for the expansion port

	4.3.3 Error codes of the API functions
	4.3.4 Baud Rate Configuration
	4.3.4.1 Baud Rate Configuration for first and second generation USB-CANmodul
	4.3.4.2 Baud Rate Configuration for third generation USB-CANmodul
	4.3.4.3 Baud Rate Configuration for fourth generation USB-CANmodul Revision 01
	4.3.4.4 Baud Rate Configuration for fifth generation USB-CANmodul1 C Revision 01
	4.3.4.5 Use of user-defined CAN baud rates

	4.3.5 CAN Messages Filter Function
	4.3.6 Using multiple CAN-channels
	4.3.7 Using the Callback Functions
	4.3.7.1 Connect Control Callback Function
	4.3.7.2 Event Callback Function
	4.3.7.3 Enumeration Callback Function

	4.3.8 Assignment of CAN-channels of Multiport devices

	5 Software support for Linux OS
	5.1 Installation of SocketCAN driver for USB-CANmodul series
	5.2 Installation of CANinterpreter Lite
	5.3 Configure the SocketCAN interface for USB-CANmodul
	5.4 Start of CANinterpreter Lite
	5.4.1 Configure and Connect the CAN interface

	5.5 CANinterpreter User Manual
	5.6 CANinterpreter Full Version

	6 Known issues
	Index

