

CANopen API for .NET

Software Manual

preliminary Edition March 2010

system house for distributed automation

CANopen API for .NET

 © SYS TEC electronic GmbH 2007 L-1114e_3

In this manual are descriptions for copyrighted products which are not explicitly
indicated as such. The absence of the trademark () symbol does not infer that a
product is not protected. Additionally, registered patents and trademarks are
similarly not expressly indicated in this manual

The information in this document has been carefully checked and is believed to be
entirely reliable. However, SYS TEC electronic GmbH assumes no responsibility
for any inaccuracies. SYS TEC electronic GmbH neither gives any guarantee nor
accepts any liability whatsoever for consequential damages resulting from the use
of this manual or its associated product. SYS TEC electronic GmbH reserves the
right to alter the information contained herein without prior notification and
accepts no responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH offers no guarantee nor accepts any
liability for damages arising from the improper usage or improper installation of
the hardware or software. SYS TEC electronic GmbH further reserves the right to
alter the layout and/or design of the hardware without prior notification and
accepts no liability for doing so.

 Copyright 2010 SYS TEC electronic GmbH. rights – including those of
translation, reprint, broadcast, photomechanical or similar reproduction and
storage or processing in computer systems, in whole or in part – are reserved. No
reproduction may occur without the express written consent from SYS TEC
electronic GmbH.

Contact Direct Your local distributor

Address: SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz
GERMANY

Ordering
Information:

+49 (3661) 6279-0
info@systec-electronic.com

Technical
Support:

+49 (3661) 6279-0
support@systec-electronic.com

Fax: +49 (3661) 62 79 99

Please find a list of our distributors
under http://www.systec-
electronic.com/distributors

Web Site: http://www.systec-electronic.com

3rd preliminary Edition March 2010

Table of Contents

L-1114e_3 © SYS TEC electronic GmbH 2007

Index of Figures and Tables.. 9
1 Introduction ... 1

1.1 Features of the CANopen API for .NET...................................... 2
1.2 Types of CANopen API for .NET.. 2

1.2.1 SO-1088 CANopen API for .NET limited for SYS TEC
CAN interfaces.. 3

1.2.2 SO-1085 CANopen API for .NET 3
1.2.3 SO-877 CANopen Source Code...................................... 3

1.3 Requirements.. 3
2 Directory structure.. 4
3 Integration and installation.. 5

3.1 Microsoft Visual Studio 2005 .. 5
3.2 Deployment .. 6

4 Object model.. 7
4.1 Namespace CANopenDotNET... 7

4.1.1 Class cCANopen ... 8
4.1.2 Class cNMT... 8
4.1.3 Class cNMTMaster ... 8
4.1.4 Class cNMTSlave.. 8
4.1.5 Class cOD.. 9
4.1.6 Class cSDO ... 9
4.1.7 Class cCOB ... 9
4.1.8 Class cHeartbeatConsumer ... 9
4.1.9 Class cHeartbeatProducer ... 10
4.1.10 Class cEmergencyConsumer... 10
4.1.11 Class cEmergencyProducer... 10
4.1.12 Class cLSSMaster ... 10
4.1.13 Enumerations and value types....................................... 10
4.1.14 Exception cCANopenException 11

5 Thread model... 12
5.1 Process thread... 12
5.2 Reentrant and thread-safe methods .. 12

6 Object dictionary... 14
7 Class reference... 15

7.1 Enumeration enumCopKernel .. 15
7.2 SDO abort codes... 17
7.3 Exception cCANopenException... 18

7.3.1 Field m_ErrorCode.. 18
7.4 Class cCANopen .. 18

7.4.1 Constructors .. 19
7.4.2 Method Dispose().. 22

CANopen API for .NET

 © SYS TEC electronic GmbH 2007 L-1114e_3

7.4.3 Delegate EventErrorHandler() 23
7.4.4 Event EventError... 23
7.4.5 Method GetNMT().. 24
7.4.6 Method GetOD() ... 24
7.4.7 Method GetHeartbeatProducer()................................... 25
7.4.8 Method GetEmergencyConsumer() 25
7.4.9 Method GetEmergencyProducer() 26
7.4.10 Method GetLSSMaster()... 26
7.4.11 Method CreateCOB().. 27
7.4.12 Method CreateHeartbeatConsumer() 28
7.4.13 Method CreateSDO() .. 28
7.4.14 Method GetMaxInstances()... 29
7.4.15 Method GetStackVersion() ... 30

7.5 Class cNMT ... 30
7.5.1 Delegate EventNmtHandler() 30
7.5.2 Event EventNmt.. 31
7.5.3 Delegate EventNmtSlaveHandler()............................... 32
7.5.4 Method ConnectToNet() ... 32
7.5.5 Method BeginConnectToNet() 34
7.5.6 Method EndConnectToNet()... 35

7.6 Class cNMTMaster .. 35
7.6.1 Event EventNmtSlave ... 35
7.6.2 Method AddSlaveNode() .. 36
7.6.3 Method ConfigureLifeGuard()...................................... 36
7.6.4 Method GetSlaveInfo() ... 37
7.6.5 Method SendCommand() .. 38
7.6.6 Method TriggerNodeGuard().. 39
7.6.7 Method DeleteSlaveNode()... 39

7.7 Class cNMTSlave... 40
7.7.1 Delegate EventNmtCommandHandler()....................... 40
7.7.2 Event EventNmtCommand ... 40
7.7.3 Method BootNetwork()... 41

7.8 Class cOD... 41
7.8.1 Method ReadObject().. 41
7.8.2 Method ReadObject(String).. 42
7.8.3 Method WriteObject()... 43
7.8.4 Method WriteObject(String) ... 43

7.9 Class cSDO .. 44
7.9.1 Delegate EventSdoFinishedHandler()........................... 44
7.9.2 Event EventSdoFinished... 45
7.9.3 Method Dispose().. 45

Table of Contents

L-1114e_3 © SYS TEC electronic GmbH 2007

7.9.4 Method ReadObject().. 46
7.9.5 Method ReadObject(String) .. 47
7.9.6 Method BeginReadObject() .. 48
7.9.7 Method BeginReadObject(String)................................. 49
7.9.8 Method EndReadObject() ... 50
7.9.9 Method WriteObject() ... 51
7.9.10 Method WriteObject(String) ... 52
7.9.11 Method BeginWriteObject() ... 53
7.9.12 Method BeginWriteObject(String)................................ 54
7.9.13 Method EndWriteObject()... 55
7.9.14 Method AbortTransfer().. 55

7.10 Class cCOB .. 56
7.10.1 Delegate EventReceivedHandler()................................ 56
7.10.2 Event EventReceived .. 57
7.10.3 Property Time.. 57
7.10.4 Method Dispose().. 57
7.10.5 Method Send()... 58

7.11 Class cHeartbeatConsumer... 58
7.11.1 Event EventHeartbeat.. 59
7.11.2 Method Dispose().. 59
7.11.3 Method Configure()... 59

7.12 Class cHeartbeatProducer... 60
7.12.1 Method Configure()... 60

7.13 Class cEmergencyConsumer .. 60
7.13.1 Delegate EventEmergencyHandler()............................. 61
7.13.2 Event EventEmergency ... 61
7.13.3 Method AddNode() ... 61
7.13.4 Method DeleteNode().. 63

7.14 Class cEmergencyProducer .. 63
7.14.1 Method Send()... 63

7.15 Class cLSSMaster... 64
7.15.1 Method SwitchModeGlobal() 64
7.15.2 Method BeginSwitchMode()... 65
7.15.3 Method EndSwitchMode().. 66
7.15.4 Method BeginInquireIdentity() 66
7.15.5 Method EndInquireIdentity() .. 68
7.15.6 Method BeginConfigure() ... 68
7.15.7 Method BeginConfigure() ... 69
7.15.8 Method EndConfigureSlave() 71
7.15.9 Method BeginIdentifySlave().. 72
7.15.10 Method BeginIdentifySlave().. 72

CANopen API for .NET

 © SYS TEC electronic GmbH 2007 L-1114e_3

7.15.11 Method EndIdentifySlave ().. 74
Glossary .. 76
References... 77

Table of Contents

L-1114e_3 © SYS TEC electronic GmbH 2007

Index of Figures and Tables

L-1114e_3 © SYS TEC electronic GmbH 2007

Index of Figures and Tables

Figure 1 UML class diagram ... 7

Table 1: Directory structure.. 4

Table 2: Constants of enumCopKernel .. 16

Table 3: SDO abort codes .. 18

Table 4: Fields of tIdentParam ... 20

Table 5: Fields of tCdrvWinParam... 21

Table 6: Constants of enumVxDType.. 21

Table 7: Constants of enumThreadPriority .. 22

Table 8: Constants of enumCdrvBaudIndex .. 22

Table 9: Constants of [Flags]enumCOBType .. 28

Table 10: Fields of tVersion... 30

Table 11: Constants of enumNMTEvent.. 31

Table 12: Constants of enumNMTState... 31

Table 13: Fields of tLifeGuardParam... 37

Table 14: Fields of tSlaveInfo.. 38

Table 15: Constants of enumNMTCommand .. 38

Table 16: Constants of enumSDOState.. 45

Table 17: Constants of enumSDOType.. 47

Table 18: Constants of enumLSSMode.. 64

Table 19: Fields of tLSSAddress.. 66

Table 20: Constants of [Flags]enumLSSInquiryService.......................... 67

Table 21: Fields of tLSSBiTiming ... 70

Table 22: Constants of enumLSSConfigureState..................................... 71

Table 23: Fields of tLSSIdentifyParam.. 73

CANopen API for .NET

 © SYS TEC electronic GmbH 2007 L-1114e_3

Introduction

L-1114e_3 © SYS TEC electronic GmbH 2007 1

1 Introduction

The CANopen API for .NET is a wrapper around the SYS TEC
CANopen stack that is built on the Microsoft .NET framework.

The .NET framework provides a sophisticated way of implementing
software libraries. These libraries are called assemblies.
The main advantages of implementing a software library as .NET
assembly are:

- Common object oriented interface, which is easy to understand.
- The assembly can be used by many programming languages

like but not limited to C#, Visual Basic .NET, C++/CLI.
- The object oriented interface is the very same in all .NET

languages. There is no need for “wrappers” anymore.
- Deployment of the assembly is very simple.
- Versioning support for each assembly.

It is assumed that you are familiar with CANopen and its usage. This
includes the CiA specification 301 [1].

CANopen API for .NET

2 © SYS TEC electronic GmbH 2007 L-1114e_3

1.1 Features of the CANopen API for .NET

The CANopen API for .NET provides a simple interface to the
SYS TEC CANopen stack.

It has the following common characteristics:

- Object oriented class model
- Supports the .NET framework 2.0
- Uses the .NET framework event model for CANopen events
- Implements the .NET exception model
- Implemented in C++/CLI
- Provides XML file for IntelliSense documentation

The following CANopen functionality is currently supported:

- Multiple separate instances of CANopen (up to 16 instances
with SO-1085 and SO-1088)

- SYS TEC CAN-Wrapper as CAN driver, which supports USB-
CANmodul, CAN-Ethernet-Gateway and more

- NMT master and slave (selectable at run time)
- Fixed object dictionary (may-be user extendable in future

versions)
- 128 SDO clients
- One SDO server (the default one)
- 126 heartbeat consumers
- Heartbeat producer
- 126 emergency consumers
- Emergency producer
- LSS master
- Reception and transmission of plain CAN layer 2 messages

(at least 20 COBs per direction may exist at the same time)

1.2 Types of CANopen API for .NET

The CANopen API for .NET is available in various types with
different capabilities.

Introduction

L-1114e_3 © SYS TEC electronic GmbH 2007 3

1.2.1 SO-1088 CANopen API for .NET
limited for SYS TEC CAN interfaces

This version is freely available for SYS TEC PC to CAN interfaces,
e.g. all USB-CANmoduls.

1.2.2 SO-1085 CANopen API for .NET

This version may be used with CAN interfaces from other vendors
which are supported by the SYS TEC CAN-Wrapper.

1.2.3 SO-877 CANopen Source Code

The CANopen Source Code includes also the source of the CANopen
API for .NET. It may be adapted and extended to your needs. For
example the object dictionary can be modified or the number of
CANopen instances can be increased or decreased.

1.3 Requirements

To use the CANopen API for .NET you must ensure that the
following software packages are installed:

- Microsoft .NET framework 2.0
- Microsoft Visual C/C++ Runtime 2005 SP 1 [3]
- SYS TEC CAN-Wrapper (file CDRVWRAP.DLL)
- Supported CAN interface with the appropriate driver, e.g.

• SYS TEC USB-CANmodul
with SO-387 USB-CANmodul Utility Disk

• SYS TEC CAN-Ethernet-Gateway
with SO-1027 CAN-Ethernet-Gateway Utility Disk

CANopen API for .NET

4 © SYS TEC electronic GmbH 2007 L-1114e_3

2 Directory structure

The software package has the following directory structure.

Directory Content
/ Assembly CANopenDotNET.DLL,

CAN-Wrapper CDRVWRAP.DLL,
XML documentation for IntelliSense

/Demo.CppCLI/ Sample project for C++/CLI, which
demonstrates SDO client, NMT master, COB,
etc.

/Demo.Cs/ Sample project for C#, which demonstrates
SDO client, NMT master, COB, etc.

/Demo_LSS_Master.CppCLI/ LSS Master project for C++/CLI
/Demo_LSS_Master.Cs/ LSS Master project for C#
/Docu/ Manuals, e.g. this manual

Table 1: Directory structure

Because the assembly is located directly in the installation directory,
this software package can be installed into your application directory
through the supplied setup file.

Integration and installation

L-1114e_3 © SYS TEC electronic GmbH 2007 5

3 Integration and installation

The assembly CANopenDotNET.DLL can be used with programming
languages that support the .NET framework 2.0. This includes for
example all languages that are supported by Microsoft Visual Studio
2005.

Basically there are two ways how to integrate an assembly into your
project: either as private or as shared assembly. Shared assemblies are
stored in the global assembly cache (GAC) on the computer and are
usable by multiple applications. To reference a shared assembly in the
GAC they need a globally unique name, which is called strong name.
Currently, CANopenDotNET.DLL does not have got a strong name.
So it is not possible to install this assembly in the GAC.

The second and easiest way is to use the assembly privately. That
means you just have to copy it to your application’s directory and
reference it from your application.

Additionally, the SYS TEC CAN-Wrapper CDRVWRAP.DLL must
be accessible. That means this DLL has to reside either in your
application’s directory or the SYSTEM32 directory of your Windows
installation. It may be that the CAN-Wrapper was already installed by
another application. Then the condition mentioned above is already
met.

3.1 Microsoft Visual Studio 2005

Adding a reference to an assembly in Visual Studio is very simple.

- Right click on the project entry in the Solution Explorer.
- Go to entry “References…” and “Add new reference…” if it is

a C++/CLI project or just “Add reference…” otherwise.
- Open the “Browse” tab and select “CANopenDotNET.DLL”.
- Press Ok to confirm
- Make sure that “local copy” is enabled for this assembly.

CANopen API for .NET

6 © SYS TEC electronic GmbH 2007 L-1114e_3

The CANopen API for .NET provides IntelliSense documentation. To
use it you have to keep the XML file CANopenDotNET.XML with
the DLL file.

3.2 Deployment

If you create a setup program for your application, just ensure that the
two DLL files CANopenDotNET.DLL and CDRVWRAP.DLL will
be copied to your application’s program directory.

Additionally the Microsoft .NET framework 2.0 and the Microsoft
Visual C/C++ Runtime 2005 SP1 must be installed on the target
system (see 1.2.2).

If you use the software packages SO-1085 or SO-1088, you may use
the supplied setup file to install the complete software package to
your application’s program directory. This assures all necessary
preconditions.

Object model

L-1114e_3 © SYS TEC electronic GmbH 2007 7

4 Object model

4.1 Namespace CANopenDotNET

Application

Class cCANopen

Class cSDO

Class cNMT

Class cOD

CANopen Stack

uses

consists of

Class
cNMTMaster

Class
cNMTSlave

Class
cLSSMaster

Class
cHeartbeatProducer

Class
cHeartbeatConsumer

Class
cEmergencyConsumer

Class
cEmergencyProducer

Class cCOB

Emcc Emcp Hbp HbcLssMst

COB

CdrvWin

Sdoc Obd NmtNmtm NmtsSdoscomm

creates

inherits

Figure 1 UML class diagram

The assembly CANopenDotNET.DLL comprises just one namespace
CANopenDotNET.

This namespace contains all classes, enumerations and value types
that implement the wrapper of the CANopen stack. The application is
only able to create instances of the cCANopen class. The other classes
are created by cCANopen instances. Some classes like the cOD class
for the object dictionary exists only once per cCANopen instance.
Others may be created multiple times per cCANopen instance.

CANopen API for .NET

8 © SYS TEC electronic GmbH 2007 L-1114e_3

The following sections provide a short introduction in what the
assembly offers. For a complete reference see section 7 “Class
reference”.

4.1.1 Class cCANopen

One object of this reference class represents one CANopen instance.
It creates all related objects like cSDO, cOD, cNMT, etc. An object of
this class can be created directly by the application. Furthermore, it
has to be disposed by the application if it is no longer used anymore.
The disposing will shut down the CANopen instance including the
associated CAN driver instance and release all resources (i.e.
managed and unmanaged).

See section 7.4.

4.1.2 Class cNMT

This abstract reference class models the local NMT state machine.

See section 7.5.

4.1.3 Class cNMTMaster

This reference class which provides the NMT master functionality
like controlling and guarding of NMT slave nodes. It is derived from
the abstract class cNMT.

See section 7.6.

4.1.4 Class cNMTSlave

This reference class which provides the NMT slave functionality. It is
derived from the abstract class cNMT.

See section 7.7.

Object model

L-1114e_3 © SYS TEC electronic GmbH 2007 9

4.1.5 Class cOD

This reference class models the local object dictionary. It provides
methods for accessing the local object dictionary.

See section 7.8.

4.1.6 Class cSDO

This reference class models one local SDO client. There may exist
multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

See section 7.9.

4.1.7 Class cCOB

This class provides the functionality to send and receive plain CAN
layer 2 messages, i.e. communication objects (COB). An instance of
this class represents one communication object. There may exist
multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

See section 7.10.

4.1.8 Class cHeartbeatConsumer

This reference class models one local heartbeat consumer. There may
exist multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

See section 7.11.

CANopen API for .NET

10 © SYS TEC electronic GmbH 2007 L-1114e_3

4.1.9 Class cHeartbeatProducer

This reference class models the local heartbeat producer.

See section 7.12.

4.1.10 Class cEmergencyConsumer

This reference class models the local emergency consumer.

See section 7.13.

4.1.11 Class cEmergencyProducer

This reference class models the local emergency producer.

See section 7.14.

4.1.12 Class cLSSMaster

This reference class which provides the LSS master functionality to
configure LSS slaves.

See section 7.15.

4.1.13 Enumerations and value types

The namespace contains a bunch of enumerations and value types.
These are used as arguments for class methods and described in detail
when the corresponding methods are explained.

One important enumeration is enumCopKernel. It represents the error
codes from the CANopen stack. The user gets in touch with this
enumeration only in two situations: either it catches a
cCANopenException or it consumes the event cCANopen.EventError
via the appropriate event handler.

Object model

L-1114e_3 © SYS TEC electronic GmbH 2007 11

4.1.14 Exception cCANopenException

This exception is thrown whenever a CANopen stack function returns
an enumCopKernel error code. This is the case if a severe error
occurred and the function cannot continue the operation. The
application should catch this exception whenever it calls a CANopen
method. Otherwise the application would crash if such an exception
was raised.

See section 7.2.

CANopen API for .NET

12 © SYS TEC electronic GmbH 2007 L-1114e_3

5 Thread model

5.1 Process thread

The SYS TEC CANopen stack for Microsoft Windows uses a multi-
threaded approach. It creates a process thread for each initialized
CANopen instance. This process thread is in charge of the following
functions. It handles incoming messages over the CAN-Bus, like
request for the SDO server and heartbeats from remote nodes. It
monitors timeouts, e.g. SDO transfer timeouts, and cyclic task like the
heartbeat producer. Furthermore, it processes more complex tasks like
the switch mode selective command of the LSS master. Additionally,
the SYS TEC CAN-Wrapper creates threads to process CAN
message, but that is totally transparent to the application.

It is important for the application, that delegates which are registered
for events are called within the CANopen instance’s process thread. It
is not allowed to call any methods of the CANopenDotNET
namespace within the delegate if not stated otherwise. That is because
the CANopen methods must be synchronized with the process thread
and critical sections cannot be entered twice in the same thread
without deadlock. Another reason is that it is not allowed to call
CANopen functions within an event callback function even without
multiple threads, because this may cause in unpredictable results.

To circumvent this problem you may start a worker thread in your
delegate.

5.2 Reentrant and thread-safe methods

There is a difference between a reentrant method and a thread-safe
method.

A reentrant method may be called simultaneously by multiple threads
for different object instance. It is not safe to call a reentrant method
by multiple threads for the very same object instance.

Thread model

L-1114e_3 © SYS TEC electronic GmbH 2007 13

On the other hand a thread-safe method may be called simultaneously
by multiple threads for the same object instance.

Most CANopen methods are reentrant, but not thread-safe. There
exist some exceptions: The constructors of the cCANopen class and
the ConnectToNet() resp. BeginConnectToNet() of the cNMT class
are neither reentrant nor thread-safe. The application has to assure
that these methods are not called simultaneously by multiple threads.

On the other hand the Get…() and Create…() methods of the
cCANopen class are thread-safe.

CANopen API for .NET

14 © SYS TEC electronic GmbH 2007 L-1114e_3

6 Object dictionary

In the current version the CANopen API for .NET is provided with a
fixed default object dictionary. This object dictionary should be
sufficient for most applications.

In the future, the CANopen API for .NET may support dynamic object
dictionaries.

If you have access to the CANopen Source Code (SO-877), you are
able to extend the object dictionary to your needs.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 15

7 Class reference

7.1 Enumeration enumCopKernel

The enumeration enumCopKernel represents the error codes from the
CANopen stack. The user gets in touch with this enumeration only in
two situations: either it catches a cCANopenException or it consumes
the event cCANopen.EventError via the appropriate event handler.

This enumeration is derived from the C enum type tCopKernel from
the CANopen stack. It uses a similar naming scheme. The constants of
enumCopKernel just use the prefix “k” instead of “kCop” as
tCopKernel.

Table lists the most common used constants and their meaning. If you
encounter other constants, please have a look in the CANopen User
Manual L-1020 [2].

Constant Description
kSuccessful No error occurred.
kIllegalInstance The CANopen instance does not exist or

was already initialized.
kNoFreeInstance The maximum number of CANopen

instances has been reached.
kInvalidNodeId An invalid node ID was specified.
kNoResource A resource of the operating system could

not be created.
kInvalidParam Invalid parameters were specified.
kCdrvInitError An error occurred while initializing the

CAN driver (e.g. the selected hardware is
not present).

kCdrvInvalidDriverType An invalid driver type (tCdrvWinParam::
m_VxDType) was requested. This error
may be issued if the requested hardware
is not present, no free device is available
or SO-1088 is used with an unauthorized
type.

kCdrvDriverNotFound The necessary driver DLL (e.g.

CANopen API for .NET

16 © SYS TEC electronic GmbH 2007 L-1114e_3

Constant Description
USBCAN32.DLL or ETHCAN.DLL)
was not found.

kCdrvInvalidDevNumber An invalid device number was specified.
kCdrvDevAlreadyInUse The device which was selected is already

in use.
kCobAlreadyExist The requested COB-ID exists already.

This may occur if a SDO client to the
very same SDO server has been created
before and was not disposed yet.

kCobCdrvStateSet The CAN driver changed its state.
kObdIllegalPart The accessed part of the object

dictionary is unknown.
kObdIndexNotExist The specified object index does not

exist.
kObdSubindexNotExist The specified subindex does not exist in

the object index.
kObdReadViolation Reading of a write-only object is not

allowed.
kObdWriteViolation Writing of a read-only object is not

allowed.
kObdAccessViolation Access to the specified object is not

allowed.
kNmtStateError An error occurred in the NMT state

machine.
kSdocInvalidParam Invalid parameters were specified for the

SDO client.
kSdocClientNotExist The selected SDO client does not exist in

the object dictionary.
kSdocBusy The SDO client is busy, i.e. a transfer is

already running.
kSdocNoFreeEntry No free SDO client index available.
kHbcNoFreeEntry No free heartbeat consumer entry

available.
kLssmIllegalState Method of cLSSMaster was called in

illegal state, i.e. in wrong order. Some
methods may be called only in LSS
mode CONFIGURATION.

Table 2: Constants of enumCopKernel

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 17

7.2 SDO abort codes

The CANopen communication profile [1] and specifications based on
it define several abort codes for SDO transfers. These abort codes
may be sent by both communication partners. For convenience, some
of them are explained below.

Value Description
0 Transfer finished successfully.
0x05030000L Toggle bit error.
0x05040000L The SDO transfer timed out. Mostly the

CANopen device is not available
anymore or the connection is broken.

0x05040001L Unknown command specifier.
0x05040002L Invalid block size
0x05040003L Invalid sequence number
0x05040004L CRC error
0x05040005L Out of memory
0x06010000L Unsupported access
0x06010001L Reading of a write-only object
0x06010002L Writing of a read-only object
0x06020000L Object does not exist
0x06040041L Object is not mappable to PDO
0x06040042L PDO length exceeded
0x06040043L Generic parameter incompatibility
0x06040047L Generic internal incompatibility
0x06060000L Access failed due to hardware error
0x06070010L Data type length does not match
0x06070012L Data type length too high
0x06070013L Data type length too low
0x06090011L Sub-index of object does not exist
0x06090030L Value range exceeded
0x06090031L Value too high
0x06090032L Value too low
0x06090036L Maximum value is less than minimum

value
0x060A0023L Resource is not available
0x08000000L General error
0x08000020L Data not transferred or stored
0x08000021L Data not transferred due to local control
0x08000022L Data not transferred due to device state

CANopen API for .NET

18 © SYS TEC electronic GmbH 2007 L-1114e_3

Value Description
0x08000023L Object dictionary does not exist

Table 3: SDO abort codes

7.3 Exception cCANopenException

This exception inherits ApplicationException. It will be thrown
whenever a CANopen stack function returns an enumCopKernel error
code unequal to enumCopKernel.kSuccessful. This is the case if a
severe error occurred and the function cannot continue the operation.
The application should catch this exception whenever it calls a
CANopen method. Otherwise the application would crash if such an
exception was raised.

7.3.1 Field m_ErrorCode

The public field m_ErrorCode is of type enumCopKernel and
represents the error code which was returned by the CANopen stack.

7.4 Class cCANopen

One object of this reference class represents one CANopen instance.
It creates all related objects like cSDO, cOD, cNMT, etc. An object of
this class can be created directly by the application. Furthermore, it
has to be disposed by the application if it is no longer used anymore.
The disposing will shut down the CANopen instance including the
associated CAN driver instance and release all resources (i.e.
managed and unmanaged).

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 19

7.4.1 Constructors

Syntax C#:
public cCANopen(

byte bLocalNodeId_p,
enumCdrvBaudIndex BaudIndex_p);

public cCANopen(
byte bLocalNodeId_p,
ref tCdrvWinParam CdrvParam_p,
enumCdrvBaudIndex BaudIndex_p);

public cCANopen(
byte bLocalNodeId_p,
enumCdrvBaudIndex BaudIndex_p,
bool fMaster_p);

public cCANopen(
byte bLocalNodeId_p,
ref tIdentParam Identity_p,
enumCdrvBaudIndex BaudIndex_p);

public cCANopen(
byte bLocalNodeId_p,
ref tCdrvWinParam CdrvParam_p,
enumCdrvBaudIndex BaudIndex_p,
bool fMaster_p);

public cCANopen(
byte bLocalNodeId_p,
ref tIdentParam Identity_p,
enumCdrvBaudIndex BaudIndex_p,
bool fMaster_p);

public cCANopen(
byte bLocalNodeId_p,
ref tIdentParam Identity_p,
ref tCdrvWinParam CdrvParam_p,
enumCdrvBaudIndex BaudIndex_p);

public cCANopen(
byte bLocalNodeId_p,
ref tIdentParam Identity_p,
ref tCdrvWinParam CdrvParam_p,
enumCdrvBaudIndex BaudIndex_p,
bool fMaster_p);

Parameters:
bLocalNodeId_p: node ID of this CANopen instance

CANopen API for .NET

20 © SYS TEC electronic GmbH 2007 L-1114e_3

Identity_p: identity of this CANopen device, e.g. device type,
vendor ID, product code, etc. If not specified it
defaults to the values of the object dictionary.

CdrvParam_p: parameters for the SYS TEC CAN-Wrapper driver. If
not specified an arbitrary USB-CANmodul will be
used.

BaudIndex_p: index of the baudrate which the CAN controller shall
use.

fMaster_p: indicates if this CANopen instance shall be NMT
master (true) or slave (false). If not specified NMT
master will be selected.

Return:
N/A.

Description:
Overloaded constructor, that creates a CANopen instance with the
supplied parameters. The constructors are NOT thread-safe.

Field Type Description
m_dwDeviceType int Device type resp. profile (object 0x1000

of local OD)
m_dwVendorId int Vendor ID (object 0x1018/1 of local OD)
m_dwProductCode int Product code (object 0x1018/2 of local

OD)
m_dwRevision int Revision number (object 0x1018/3 of

local OD)
m_dwSerNum int Serial number (object 0x1018/4 of local

OD)
m_sDevName string Device name (object 0x1008 of local OD)
m_sHwVersion string Hardware version (object 0x1009 of local

OD)
m_sSwVersion string Software version (object 0x100A of local

OD)

Table 4: Fields of tIdentParam

Field Type Description
m_VxDType enumVxDType CAN hardware type
m_ThreadPriority enumThreadPrior

ity
Priority of CAN-Wrapper thread

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 21

Field Type Description
m_bDeviceNr byte Device number (255 for an arbitrary

device)
m_wIOBase short IO base address (only valid for ISA cards)
m_bIRQ byte IRQ (only valid for ISA cards)
m_IpAddress Net::IPAddress IP address (only valid for CAN-Ethernet-

Gateway)
m_wIPPort int IP port in range 1 - 65535 (only valid for

CAN-Ethernet-Gateway)
m_dwReconnectTi
meout

int Reconnect timeout (only valid for CAN-
Ethernet-Gateway)

m_dwConnectTime
out

int Connect timeout (only valid for CAN-
Ethernet-Gateway)

m_dwDisconnectTi
meout

int Disconnect timeout (only valid for CAN-
Ethernet-Gateway)

m_bIpProtocol byte IP protocol, 0 = TCP, 1 = UDP (only
valid for CAN-Ethernet-Gateway)

Table 5: Fields of tCdrvWinParam

Constant Description
kAutoDetect Autodetect strategy
kPhyCAN PhyCAN driver with pcNetCAN card
kPCAN_V1_ISA PCAN 1.x driver with pcNetCAN card
kPCAN_V1_Dongle PCAN 1.x driver with PCAN-Dongle
kUSBCAN SYS TEC USB-CANmodul driver
kPCAN_PCI PCAN-PCI driver with PCI card
kPCAN_V2_ISA PCAN 2.x driver with pcNETCAN card
kPCAN_V2_Dongle PCAN 2.x driver with PCAN-Dongle
kPCAN_V2_PCI PCAN 2.x driver PCI card
kPCAN_Dongle PCAN-Dongle-Driver
kPCAN_USB PEAK USB-CAN-Modul
kSCANCONN_USB SYSTEC CAN Connector with USB-

CANmodul
kSCANCONN_ETH SYSTEC CAN Connector with CAN

Ethernet Gateway
kETHCAN ETHERNET-CAN-GATEWAY-Driver
kPCAN_V2_USB PCAN 2.x driver with PCAN-USB
kIniDetect Read parameters from INI file

Table 6: Constants of enumVxDType

CANopen API for .NET

22 © SYS TEC electronic GmbH 2007 L-1114e_3

Constant Description
kNormal Normal thread priority
kHighest Highest thread priority
kTimeCritical Time critical thread priority

Table 7: Constants of enumThreadPriority

Constant Description
k1MBaud 1 MBit/sec
k800kBaud 800 kBit/sec
k500kBaud 500 kBit/sec
k250kBaud 250 kBit/sec
k125kBaud 125 kBit/sec
k100kBaud 100 kBit/sec
k50kBaud 50 kBit/sec
k20kBaud 20 kBit/sec
k10kBaud 10 kBit/sec

Table 8: Constants of enumCdrvBaudIndex

7.4.2 Method Dispose()

Syntax C#:
public sealed override void Dispose();

Parameters:
N/A.

Return:
N/A.

Description:
The Dispose() method has to be called when this CANopen instance
is no longer used anymore. This method shuts down this CANopen
instance and releases all unmanaged resources.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 23

7.4.3 Delegate EventErrorHandler()

Syntax C#:
public delegate void EventErrorHandler(

object Sender_p,
enumCopKernel ErrorCode_p,
object pArg_p);

Parameters:
Sender_p: Sender of the error event, i.e. this object.
ErrorCode_p: Error code from the CANopen stack
pArg_p: Object which contains details of the error event. The

class of the object depends on the error code.

Return:
N/A.

Description:
This is the delegate type for error events (EventError) from the
CANopen stack.

7.4.4 Event EventError

Syntax C#:
public event EventErrorHandler EventError;

Description:
This event signals errors from the CANopen stack. Registered event
handlers are called within the CANopen instance's process thread.

CANopen API for .NET

24 © SYS TEC electronic GmbH 2007 L-1114e_3

7.4.5 Method GetNMT()

Syntax C#:
public cNMT GetNMT();

Parameters:
N/A.

Return:
cNMT Singleton object of either class cNMTMaster or

cNMTSlave

Description:
This method returns the related cNMT object of this CANopen
instance. This object must not be diposed. This method is thread-safe.

7.4.6 Method GetOD()

Syntax C#:
public cOD GetOD();

Parameters:
N/A.

Return:
cOD Singleton object of class cOD

Description:
This method returns the related cOD object of this CANopen instance.
This object must not be diposed. This method is thread-safe.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 25

7.4.7 Method GetHeartbeatProducer()

Syntax C#:
public cHeartbeatProducer GetHeartbeatProducer();

Parameters:
N/A.

Return:
cHeartbeatProducer Singleton object of class cHeartbeatProducer

Description:
This method returns the related cHeartbeatProducer object of this
CANopen instance. This object must not be diposed. This method is
thread-safe.

7.4.8 Method GetEmergencyConsumer()

Syntax C#:
public cEmergencyConsumer GetEmergencyConsumer();

Parameters:
N/A.

Return:
cEmergencyConsumer Singleton object of class cEmergencyConsumer

Description:
This method returns the related cEmergencyConsumer object of this
CANopen instance. This object must not be diposed. This method is
thread-safe.

CANopen API for .NET

26 © SYS TEC electronic GmbH 2007 L-1114e_3

7.4.9 Method GetEmergencyProducer()

Syntax C#:
public cEmergencyProducer GetEmergencyProducer();

Parameters:
N/A.

Return:
cEmergencyProducer Singleton object of class cEmergencyProducer

Description:
This method returns the related cEmergencyProducer object of this
CANopen instance. This object must not be diposed. This method is
thread-safe.

7.4.10 Method GetLSSMaster()

Syntax C#:
public cLSSMaster GetLSSMaster();

Parameters:
N/A.

Return:
cLSSMaster Singleton object of class cLSSMaster

Description:
This method returns the related cLSSMaster object of this CANopen
instance. This object must not be diposed. This method is thread-safe.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 27

7.4.11 Method CreateCOB()

Syntax C#:
public cCOB CreateCOB(

int dwCobId_p,
enumCobType CobType_p,
object pObject_p);

public cCOB CreateCOB(
int dwCobId_p,
enumCobType CobType_p,
object pObject_p,
int dwCycleTime_p);

Parameters:
dwCobId_p: COB-ID of the CAN message
CobType_p: Type of the CAN message
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte) with a maximum size of 8
bytes.
Sending of boxed value types makes only sense if they
can be updated without creating a new object (AFAIK
this is only possible with C++/CLI). The only solution
is to wrap value types in a new reference type and
specify sequential layout.

dwCycleTime_p Cycle time for cyclic Tx CAN messages specified in
100 µs.

Return:
cCOB Newly created object of class cCOB

Description:
This method returns a cCOB object which was created with the
supplied parameters. This object has to be disposed if it is no longer
used anymore.

Constant Description
kSend standard CAN messages to send
kRecv standard CAN messages to receive
kRmtSend receive data as answer of RTR frame

CANopen API for .NET

28 © SYS TEC electronic GmbH 2007 L-1114e_3

Constant Description
kRmtRecv send data as answer of RTR frame
kForceSend standard CAN messages to send and

forced by received RTR frame
kForceRmtRecv send data as answer of RTR frame and

with CobSend(immediately=TRUE)
kCyclicSend standard CAN message which is sent

cyclically
kCyclicRmtSend RTR frame which is sent cyclically
kFilter filter for COB type
kExtended extended CAN message (CAN2.0B)

Table 9: Constants of [Flags]enumCOBType

7.4.12 Method CreateHeartbeatConsumer()

Syntax C#:
public cHeartbeatConsumer CreateHeartbeatConsumer(

byte bNodeId_p,
short wHeartbeatTime_p);

Parameters:
bNodeId_p: Node ID of the heartbeat producer
wHeartbeatTime_p: Time of heartbeat in [ms] which should be larger than

the one of the producer

Return:
cHeartbeatConsumer Newly created object of class cHeartbeatConsumer

Description:
This method returns a cHeartbeatConsumer object which was created
with the supplied parameters. This object has to be diposed if it is no
longer used anymore.

7.4.13 Method CreateSDO()

Syntax C#:
public cSDO CreateSDO(

byte bServerNodeId_p,

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 29

short wClientIndex_p,
int dwRxCanId_p,
int dwTxCanId_p);

Parameters:
bServerNodeId_p: Destination node ID
wClientIndex_p: SDO client index to be used; 0 means that arbitrary

client index will be used; other valid values are
0x1280 - 0x12FF

dwRxCanId_p: receive CAN-ID; 0 means that default SDO server
will be used

dwTxCanId_p: transmit CAN-ID; 0 means that default SDO server
will be used

Return:
cSDO Newly created object of class cSDO

Description:
This method returns a cSDO object which was created with the
supplied parameters. This object has to be diposed if it is no longer
used anymore.

7.4.14 Method GetMaxInstances()

Syntax C#:
public static int GetMaxInstances();

Parameters:
N/A.

Return:
int Number of supported object instances

Description:
This method returns the maximum supported numbers of CANopen
instances of this assembly.

CANopen API for .NET

30 © SYS TEC electronic GmbH 2007 L-1114e_3

7.4.15 Method GetStackVersion()

Syntax C#:
public static void GetStackVersion(

ref tVersion Version_p);

Parameters:
Version_p: Contains the version number in format

m_bMajor.m_bMinor.m_wRelease.

Return:
N/A.

Description:
This method returns the version number of the CANopen stack.

Field Type Description
m_bMajor byte Major version number
m_bMinor byte Minor version number
m_wRelease short Release number

Table 10: Fields of tVersion

7.5 Class cNMT

This abstract reference class models the local NMT state machine.

7.5.1 Delegate EventNmtHandler()

Syntax C#:
public delegate void EventNmtHandler(

enumNMTEvent NmtEvent_p,
enumNMTState NmtState_p);

Parameters:
NmtEvent_p: Occured NMT event
NmtState_p: Current NMT state

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 31

Return:
N/A.

Description:
This is the delegate type for local NMT events which result in NMT
state changes.

Constant Description
kEnterInitialising Initialize NMT state machine
kResetNode Reset node resp. application
kPreResetCommunication Before entering reset communication
kResetCommunication Reset communication
kPostResetCommunication After reset communication
kEnterPreOperational Enter NMT state PRE-OPERATIONAL
kEnterOperational Enter NMT state OPERATIONAL
kEnterStopped Enter NMT state STOPPED

Table 11: Constants of enumNMTEvent

Constant Description
kInitialisation NMT state INITIALISATION
kPreOperational NMT state PRE-OPERATIONAL
kOperational NMT state OPERATIONAL
kStopped NMT state STOPPED

Table 12: Constants of enumNMTState

7.5.2 Event EventNmt

Syntax C#:
public event EventNmtHandler EventNmt;

Description:
This event signals local NMT state changes. Registered event
handlers are called within the CANopen instance's process thread.

CANopen API for .NET

32 © SYS TEC electronic GmbH 2007 L-1114e_3

7.5.3 Delegate EventNmtSlaveHandler()

Syntax C#:
public delegate void EventNmtSlaveHandler(

byte bNodeId_p,
enumNMTErrorControlEvent NmtmEvent_p,
enumNMTState NmtState_p);

Parameters:
bNodeId_p: Node ID of the affected CANopen device
NmtmEvent_p: Occured NMT error control event
NmtState_p: Most recently transmitted NMT state of the specified

node

Return:
N/A.

Description:
This is the delegate type for NMT error control events which indicate
changes of guarded nodes. This delegate is used by the cNMTMaster
and cHeartbeatConsumer class.

7.5.4 Method ConnectToNet()

Syntax C#:
public virtual void ConnectToNet();

Parameters:
N/A.

Return:
N/A.

Description:
This is a virtual method which initializes this CANopen instances and
drives the NMT state machine until PRE-OPERATIONAL. There
must not be called any CANopen methods until the NMT state
machine is in state PRE-OPERATIONAL.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 33

This method is neither thread-safe nor reentrant.

CANopen API for .NET

34 © SYS TEC electronic GmbH 2007 L-1114e_3

7.5.5 Method BeginConnectToNet()

Syntax C#:
public IAsyncResult BeginConnectToNet(

AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
delegateAsyncCallback_p: Delegate which will be called when the process has

finished.
Specifying a null reference is allowed. The delegate
may be called within the CANopen instance's process
thread. Therefore it is only allowed to call the
CANopen method EndConnectToNet() within the
delegate.

pAsyncState_p: Associated application specific object

Return:
IAsyncResult Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method which initializes this CANopen instances and drives the
NMT state machine until PRE-OPERATIONAL by calling the virtual
method ConnectToNet(). There must not be called any CANopen
methods until the NMT state machine is in state PRE-
OPERATIONAL.

The only exception is the method EndConnectToNet(), which must be
called afterwards.

This method is neither thread-safe nor reentrant.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 35

7.5.6 Method EndConnectToNet()

Syntax C#:
public void EndConnectToNet(

IAsyncResult pAsyncResult_p);

Parameters:
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginConnectToNet()

Return:
N/A.

Description:
This method waits until this CANopen instances is initialized and the
NMT state is PRE-OPERATIONAL.

This method is NOT thread-safe, but reentrant.

7.6 Class cNMTMaster

This reference class which provides the NMT master functionality
like controlling and guarding of NMT slave nodes. It is derived from
the abstract class cNMT.

7.6.1 Event EventNmtSlave

Syntax C#:
public event cNMT.EventNmtSlaveHandler EventNmtSlave;

Description:
This event signals changes of the guarded slave node, e.g. boot-up,
connection loss or NMT state changes.
This event is of the same delegate as
cHeartbeatConsumer.EventHeartbeat. Registered event handlers are
called within the CANopen instance's process thread.

CANopen API for .NET

36 © SYS TEC electronic GmbH 2007 L-1114e_3

7.6.2 Method AddSlaveNode()

Syntax C#:
public void AddSlaveNode(

byte bNodeId_p);

Parameters:
bNodeId_p: Slave node ID

Return:
N/A.

Description:
This method adds the specified node ID as slave node. After
execution of this method boot-up events are forwarded for this node
and guarding may be configured.

This method is thread-safe.

7.6.3 Method ConfigureLifeGuard()

Syntax C#:
public void ConfigureLifeGuard(

byte bNodeId_p,
ref tLifeGuardParam LgParam_p);

Parameters:
bNodeId_p: Slave node ID
LgParam_p: Life guarding parameters (time and factor)

Return:
N/A.

Description:
This method configures the specified life guarding parameters for the
slave node.

This method is thread-safe.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 37

Field Type Description
m_wTime short Guard time in 1 [ms] that is the interval

in which the slave is polled by the master.
m_bFactor byte Factor multiplied by the guard time gives

the live time of the slave. If the slave does
not respond within that time an event is
raised.

Table 13: Fields of tLifeGuardParam

7.6.4 Method GetSlaveInfo()

Syntax C#:
public void GetSlaveInfo(

byte bNodeId_p,
ref tSlaveInfo SlaveInfo_p);

Parameters:
bNodeId_p: Slave node ID
SlaveInfo_p: Slave node information like NMT state and guarding

state

Return:
N/A.

Description:
This method returns some information about the specified slave node.

This method is thread-safe.

Field Type Description
m_bLostMsgCount byte Counter of lost messages, i.e. responses

from the slave node.
m_NMTState enumNMTState Recently transmitted NMT state of the

slave node.
m_fLgActive bool Indicates if life guarding is currently

active.
m_fNgActive bool Indicates if node guarding is currently

active. It will be set if a single node guard
request was sent to the slave node. And it

CANopen API for .NET

38 © SYS TEC electronic GmbH 2007 L-1114e_3

Field Type Description
will be reset if that request is responded.

Table 14: Fields of tSlaveInfo

7.6.5 Method SendCommand()

Syntax C#:
public void SendCommand(

byte bNodeId_p,
enumNMTCommand Command_p);

Parameters:
bNodeId_p: Destination node ID; value 0 means all nodes

including ourselves (except for NMT commands
kResetNode and kResetCommunication); the local
node ID is also valid

Return:
N/A.

Description:
This method sends the specified NMT command to the specified
node. Except kResetNode and kResetCommunication for all nodes,
these commands are also executed on this CANopen instance if
applicable.

This method is thread-safe.

Constant Description
kStartRemoteNode Start remote node, i.e. enter

OPERATIONAL.
kStopRemoteNode Stop remote node, i.e. enter STOPPED.
kEnterPreOperational Enter PRE-OPERATIONAL.
kResetNode Reset Node.
kResetCommunication Reset Communication.

Table 15: Constants of enumNMTCommand

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 39

7.6.6 Method TriggerNodeGuard()

Syntax C#:
public void TriggerNodeGuard(

byte bNodeId_p);

Parameters:
bNodeId_p: Slave node ID

Return:
N/A.

Description:
This method triggers one node guard for this slave node.

This method is thread-safe.

7.6.7 Method DeleteSlaveNode()

Syntax C#:
public void DeleteSlaveNode(

byte bNodeId_p);

Parameters:
bNodeId_p: Slave node ID

Return:
N/A.

Description:
This method deletes the specified node ID as slave node. After
execution of this method for example no boot-up events are
forwarded for this node.

This method is thread-safe.

CANopen API for .NET

40 © SYS TEC electronic GmbH 2007 L-1114e_3

7.7 Class cNMTSlave

This reference class which provides the NMT slave functionality. It is
derived from the abstract class cNMT.

7.7.1 Delegate EventNmtCommandHandler()

Syntax C#:
public delegate void EventNmtCommandHandler(

enumNMTCommand NmtCommand_p);

Parameters:
NmtCommand_p: Received NMT command

Return:
N/A.

Description:
This is the delegate type for received NMT commands. If the event
handler throws a cCANopenException the NMT command will be
rejected and not processed.

7.7.2 Event EventNmtCommand

Syntax C#:
public event EventNmtCommandHandler EventNmtCommand;

Description:
This Event notifies the application about received NMT commands. If
any event handler throws a cCANopenException the NMT command
will be rejected and not processed. Registered event handlers are
called within the CANopen instance's process thread.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 41

7.7.3 Method BootNetwork()

Syntax C#:
public void BootNetwork();

Parameters:
N/A.

Return:
N/A.

Description:
This method sends the NMT command Start Remote Node to all
nodes. Afterwards it enters itself the NMT state OPERATIONAL.
This method may be used by NMT slave devices with simple startup
capability.

This method is thread-safe.

7.8 Class cOD

This reference class models the local object dictionary. It provides
methods for accessing the local object dictionary.

7.8.1 Method ReadObject()

Syntax C#:
public void ReadObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary

CANopen API for .NET

42 © SYS TEC electronic GmbH 2007 L-1114e_3

pObject_p: Object of a blittable type (e.g. value type like
primitive types, reference types which are laid out
sequential or array of Byte).

Return:
N/A.

Description:
This method reads the specified object from the local object
dictionary to the content of the specified reference type.

This method is thread-safe.

7.8.2 Method ReadObject(String)

Syntax C#:
public void ReadObject(

int wIndex_p,
byte bSubIndex_p,
ref string pString_p,
int dwMaxStringSize_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pString_p: Reference to newly created String which will contain

the read value.
dwMaxStringSize_p: Maximum size of the String that will be created.

Return:
N/A.

Description:
This method reads the specified object of type VSTRING from the
local object dictionary to a newly created String object.

This method is thread-safe.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 43

7.8.3 Method WriteObject()

Syntax C#:
public void WriteObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte).

Return:
N/A.

Description:
This method writes the content of the specified reference type to the
specified object of the local object dictionary.

This method is thread-safe.

7.8.4 Method WriteObject(String)

Syntax C#:
public void WriteObject(

int wIndex_p,
byte bSubIndex_p,
string pString_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pString_p: String which will be written.

CANopen API for .NET

44 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
This method writes the specified String to the specified object of the
local object dictionary.

This method is thread-safe.

7.9 Class cSDO

This reference class models one local SDO client. There may exist
multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

7.9.1 Delegate EventSdoFinishedHandler()

Syntax C#:
public delegate void EventSdoFinishedHandler(

object Sender_p,
byte bServerNodeId_p,
object pObject_p,
enumSDOState SdoState_p,
int dwAbortCode_p,
int dwTransmittedBytes_p);

Parameters:
pSender_p: Sender of this event
bServerNodeId_p: Node ID of the associated SDO server.
pObject_p: Object which contains the received or sent data.
SdoState_p: State of the SDO transfer.
dwAbortCode_p: SDO abort code (0 if transfer finished successfully).
dwTransmittedBytes_p: Number of Bytes which were transmitted by the SDO

transfer.

Return:
N/A.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 45

Description:
This is the delegate type for SDO finished events.

Constant Description
kNotActive No transfer active.
kRunning Transfer is running.
kTxAborted Transmission was aborted.
kRxAborted Reception was aborted.
kFinish Transfer has finished successfully.

Table 16: Constants of enumSDOState

7.9.2 Event EventSdoFinished

Syntax C#:
public event EventSdoFinishedHandler EventSdoFinished;

Description:
This event notifies the application that the SDO transfer has finished
and passes the information of the finished SDO transfer to the
application. Registered event handlers are called within the CANopen
instance's process thread.

7.9.3 Method Dispose()

Syntax C#:
public sealed override void Dispose();

Parameters:
N/A.

Return:
N/A.

CANopen API for .NET

46 © SYS TEC electronic GmbH 2007 L-1114e_3

Description:
The Dispose() method has to be called when this SDO client is no
longer used anymore. This method releases the corresponding SDO
client index in the object dictionary.

This method is NOT thread-safe, but reentrant.

7.9.4 Method ReadObject()

Syntax C#:
public void ReadObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p);

public void ReadObject(
int wIndex_p,
byte bSubIndex_p,
object pObject_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte).

Type_p: Type of SDO transfer. This type is ignored if there are
transferred only up to 4 bytes, because these transfers
are performed as expedited transfers. It defaults to
enumSDOType.kAuto if not specified.

Return:
N/A.

Description:
This method reads the specified object from the associated SDO
server to the content of the specified reference type. When the transfer
finishes the event EventSdoFinished will be raised.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 47

This method does not block until the transfer is finished. Via the same
SDO client only one transfer can be executed at the same time.

This method is NOT thread-safe, but reentrant.

Constant Description
kAuto First try to use block transfer and if that

is rejected by the SDO server use
segmented transfer.

kSegment Use segmented transfer.
kBlock Use block transfer.

Table 17: Constants of enumSDOType

7.9.5 Method ReadObject(String)

Syntax C#:
public void ReadObject(

int wIndex_p,
byte bSubIndex_p,
int dwStringSize_p);

public void ReadObject(
int wIndex_p,
byte bSubIndex_p,
int dwStringSize_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
dwStringSize_p: Maximum size which will be transferred.
Type_p: Type of SDO transfer. This type is ignored if there are

transferred only up to 4 bytes, because these transfers
are performed as expedited transfers. It defaults to
enumSDOType.kAuto if not specified.

CANopen API for .NET

48 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
This method reads the specified object of type VSTRING from the
associated SDO server to a newly created String object. When the
transfer finishes the event EventSdoFinished will be raised.

This method does not block until the transfer is finished. Via the same
SDO client only one transfer can be executed at the same time.

This method is NOT thread-safe, but reentrant.

7.9.6 Method BeginReadObject()

Syntax C#:
public IAsyncResult BeginReadObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte).

Type_p: Type of SDO transfer. This type is ignored if there are
transferred only up to 4 bytes, because these transfers
are performed as expedited transfers.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the transfer.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 49

Description:
This method reads the specified object from the associated SDO
server to the content of the specified reference type. When the transfer
finishes the event EventSdoFinished will be raised.

This method does not block until the transfer is finished. The
application must call the method EndReadObject() with the returned
IAsyncResult afterwards. Via the same SDO client only one transfer
can be executed at the same time.

This method is NOT thread-safe, but reentrant.

7.9.7 Method BeginReadObject(String)

Syntax C#:
public IAsyncResult BeginReadObject(

int wIndex_p,
byte bSubIndex_p,
int dwStringSize_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
dwStringSize_p: Maximum size which will be transferred.
Type_p: Type of SDO transfer. This type is ignored if there are

transferred only up to 4 bytes, because these transfers
are performed as expedited transfers.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the transfer.

Description:
This method reads the specified object of type VSTRING from the
associated SDO server to a newly created String object. When the
transfer finishes the event EventSdoFinished will be raised.

CANopen API for .NET

50 © SYS TEC electronic GmbH 2007 L-1114e_3

This method does not block until the transfer is finished. The
application must call the method EndReadObject() with the returned
IAsyncResult afterwards.Via the same SDO client only one transfer
can be executed at the same time.

This method is NOT thread-safe, but reentrant.

7.9.8 Method EndReadObject()

Syntax C#:
public int EndReadObject(

IAsyncResult pAsyncResult_p);
public int EndReadObject(

ref byte bServerNodeId_p,
ref object pObject_p,
ref enumSDOState SdoState_p,
ref int dwTransmittedBytes_p,
IAsyncResult pAsyncResult_p);

Parameters:
bServerNodeId_p: Node ID of the associated SDO server.
pObject_p: Object which contains the received or sent data.
SdoState_p: State of the SDO transfer.
dwTransmittedBytes_p: Number of Bytes which were transmitted by the SDO

transfer.
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginConnectToNet()

Return:
int: SDO abort code (0 if transfer finished successfully).

Description:
This overloaded method waits until the transfer is finished and returns
the SDO abort code.

This method is NOT thread-safe, but reentrant.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 51

7.9.9 Method WriteObject()

Syntax C#:
public void WriteObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p);

public void WriteObject(
int wIndex_p,
byte bSubIndex_p,
object pObject_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte).

Type_p: Type of SDO transfer. This type is ignored if there are
transferred only up to 4 bytes, because these transfers
are performed as expedited transfers. It defaults to
enumSDOType.kAuto if not specified.

Return:
N/A.

Description:
This method writes the content of the specified reference type to the
specified object of the associated SDO server. When the transfer
finishes the event EventSdoFinished will be raised.

This method does not block until the transfer is finished. Via the same
SDO client only one transfer can be executed at the same time.

This method is NOT thread-safe, but reentrant.

CANopen API for .NET

52 © SYS TEC electronic GmbH 2007 L-1114e_3

7.9.10 Method WriteObject(String)

Syntax C#:
public void WriteObject(

int wIndex_p,
byte bSubIndex_p,
string pString_p);

public void WriteObject(
int wIndex_p,
byte bSubIndex_p,
string pString_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pString_p: String which will be transferred
Type_p: Type of SDO transfer. This type is ignored if there are

transferred only up to 4 bytes, because these transfers
are performed as expedited transfers. It defaults to
enumSDOType.kAuto if not specified.

Return:
N/A.

Description:
This method writes the specified String to the specified object of the
associated SDO server. When the transfer finishes the event
EventSdoFinished will be raised.

This method does not block until the transfer is finished. Via the same
SDO client only one transfer can be executed at the same time.

This method is NOT thread-safe, but reentrant.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 53

7.9.11 Method BeginWriteObject()

Syntax C#:
public IAsyncResult BeginWriteObject(

int wIndex_p,
byte bSubIndex_p,
object pObject_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pObject_p: Object of a blittable type (e.g. value type like

primitive types, reference types which are laid out
sequential or array of Byte).

Type_p: Type of SDO transfer. This type is ignored if there are
transferred only up to 4 bytes, because these transfers
are performed as expedited transfers.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the transfer.

Description:
This method writes the content of the specified reference type to the
specified object of the associated SDO server. When the transfer
finishes the event EventSdoFinished will be raised.

This method does not block until the transfer is finished. The
application must call the method EndWriteObject() with the returned
IAsyncResult afterwards. Via the same SDO client only one transfer
can be executed at the same time.

This method is NOT thread-safe, but reentrant.

CANopen API for .NET

54 © SYS TEC electronic GmbH 2007 L-1114e_3

7.9.12 Method BeginWriteObject(String)

Syntax C#:
public IAsyncResult BeginWriteObject(

int wIndex_p,
byte bSubIndex_p,
string pString_p,
enumSDOType Type_p);

Parameters:
wIndex_p: Index of object dictionary. It actually only has a range

from 0 to 65535. The data type int is used because of
CLS compliance.

bSubIndex_p: Subindex of object dictionary
pString_p: String which will be transferred
Type_p: Type of SDO transfer. This type is ignored if there are

transferred only up to 4 bytes, because these transfers
are performed as expedited transfers.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the transfer.

Description:
This method writes the specified String to the specified object of the
associated SDO server. When the transfer finishes the event
EventSdoFinished will be raised.

This method does not block until the transfer is finished. The
application must call the method EndWriteObject() with the returned
IAsyncResult afterwards.Via the same SDO client only one transfer
can be executed at the same time.

This method is NOT thread-safe, but reentrant.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 55

7.9.13 Method EndWriteObject()

Syntax C#:
public int EndWriteObject(

IAsyncResult pAsyncResult_p);
public int EndWriteObject(

ref byte bServerNodeId_p,
ref object pObject_p,
ref enumSDOState SdoState_p,
ref int dwTransmittedBytes_p,
IAsyncResult pAsyncResult_p);

Parameters:
bServerNodeId_p: Node ID of the associated SDO server.
pObject_p: Object which contains the received or sent data.
SdoState_p: State of the SDO transfer.
dwTransmittedBytes_p: Number of Bytes which were transmitted by the SDO

transfer.
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginConnectToNet()

Return:
int: SDO abort code (0 if transfer finished successfully).

Description:
This overloaded method waits until the transfer is finished and returns
the SDO abort code.

This method is NOT thread-safe, but reentrant.

7.9.14 Method AbortTransfer()

Syntax C#:
public void AbortTransfer(

int dwAbortCode_p);

Parameters:
dwAbortCode_p: SDO abort code which will be transmitted to the SDO

server.

CANopen API for .NET

56 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
This method aborts the running transfer with the specified SDO abort
code.

This method is NOT thread-safe, but reentrant.

7.10 Class cCOB

This class provides the functionality to send and receive plain CAN
layer 2 messages, i.e. communication objects (COB). An instance of
this class represents one communication object. There may exist
multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

7.10.1 Delegate EventReceivedHandler()

Syntax C#:
public delegate void EventReceivedHandler(

cCOB pSender_p,
object pObject_p);

Parameters:
pSender_p: Sender of this event
pObject_p: Object which contains the received data. If pObject_p

is null, too less data was received.

Return:
N/A.

Description:
This is the delegate type for COB received events.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 57

7.10.2 Event EventReceived

Syntax C#:
public event EventReceivedHandler EventReceived;

Description:
This event passes the data of the received CAN message to the
application. Registered event handlers are called within the CANopen
instance's process thread.

7.10.3 Property Time

Syntax C#:
public property int Time;

Description:
The property Time describes the cycle time of cyclic Tx CAN
messages. In case of received CAN messages it is the timestamp when
the CAN message was received.
The property Time is measured in units of 100 µs.

Please note: In the current version of the USB-CANmodul driver the
timestamp has only a width of 24 bits and is measured in units of 1
ms. This means that the USB-CANmodul timestamp will wrap around
after 16,777,215 ms = approx. 4.66 h. Hence the receive timestamp
stored in the property Time will wrap around after 167,772,150 * 100
µs.

7.10.4 Method Dispose()

Syntax C#:
public sealed override void Dispose();

Parameters:
N/A.

CANopen API for .NET

58 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
The Dispose() method has to be called when this SDO client is no
longer used anymore. This method releases the corresponding
message object in the CANopen instance.

This method is NOT thread-safe, but reentrant.

7.10.5 Method Send()

Syntax C#:
public void Send();

Parameters:
N/A.

Return:
N/A.

Description:
This method sends the associated object..

This method is thread-safe.

7.11 Class cHeartbeatConsumer

This reference class models one local heartbeat consumer. There may
exist multiple instances which were created by the same cCANopen
instance. The application is responsible for disposing each instance
when it is no longer used.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 59

7.11.1 Event EventHeartbeat

Syntax C#:
public event cNMT.EventNmtSlaveHandler EventHeartbeat;

Description:
This event signals changes of the heartbeat producer, e.g. first
heartbeat, connection loss and NMT state changes. This event is of
the same delegate as cNMTMaster.EventNmtSlave. Registered event
handlers are called within the CANopen instance's process thread.

7.11.2 Method Dispose()

Syntax C#:
public sealed override void Dispose();

Parameters:
N/A.

Return:
N/A.

Description:
The Dispose() method has to be called when this heartbeat consumer
is no longer used anymore. This method releases the corresponding
sub-index in the object dictionary.

This method is NOT thread-safe, but reentrant.

7.11.3 Method Configure()

Syntax C#:
public void Configure(short wHeartbeatTime_p);

Parameters:
wHeartbeatTime_p: Time of heartbeat in [ms] which should be larger than

the one of the producer.

CANopen API for .NET

60 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
This method changes the heartbeat time of this consumer, that means
the consumer must receive a heartbeat from the producer within this
time, otherwise an event is raised.

This method is thread-safe.

7.12 Class cHeartbeatProducer

This reference class models the local heartbeat producer.

7.12.1 Method Configure()

Syntax C#:
public void Configure(short wHeartbeatTime_p);

Parameters:
wHeartbeatTime_p: Time of heartbeat in [ms] which should be less than

the one of any consumer.

Return:
N/A.

Description:
This method changes the heartbeat time of the local producer.

This method is thread-safe.

7.13 Class cEmergencyConsumer

This reference class models the local emergency consumer.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 61

7.13.1 Delegate EventEmergencyHandler()

Syntax C#:
public delegate void EventEmergencyHandler(

byte bNodeId_p,
short wErrorCode_p,
byte bErrorReg_p,
byte[] abUserCode_p);

Parameters:
bNodeId_p: Node ID of the emergency producer.
wErrorCode_p: Error code of the emergency.
bErrorReg_p: Value of the error register of the emergency producer.
abUserCode_p: Additional manufacturer specific information that is

an array of Byte with length 5.

Return:
N/A.

Description:
This is the delegate type for emergency events, i.e. when the
consumer receives emergency messages.

7.13.2 Event EventEmergency

Syntax C#:
public event EventEmergencyHandler EventEmergency;

Description:
This event signals received emergency messages. Registered event
handlers are called within the CANopen instance's process thread.

7.13.3 Method AddNode()

Syntax C#:
public void AddNode(

byte bNodeId_p);

CANopen API for .NET

62 © SYS TEC electronic GmbH 2007 L-1114e_3

Parameters:
bNodeId_p: Node ID of an emergency producer. 0 adds all nodes

except the local node ID as emergency producer.

Return:
N/A.

Description:
This method adds the specified node ID as an emergency producer.
After execution of this method emergency messages are forwarded for
this node.

This method is thread-safe.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 63

7.13.4 Method DeleteNode()

Syntax C#:
public void DeleteNode(

byte bNodeId_p);

Parameters:
bNodeId_p: Node ID of an emergency producer. 0 deletes all

nodes except the local node ID as emergency
producer.

Return:
N/A.

Description:
This method deletes the specified node ID as an emergency producer.

This method is thread-safe.

7.14 Class cEmergencyProducer

This reference class models the local emergency producer.

7.14.1 Method Send()

Syntax C#:
public void Send(

short wErrorCode_p,
byte bErrorReg_p,
byte[] abUserCode_p,
short wAdditionalInfo_p);

Parameters:
wErrorCode_p: Error code of the emergency.
bErrorReg_p: Value of the error register.
abUserCode_p: Additional manufacturer specific information that is

an array of Byte with length 5.
wAdditionalInfo_p Additional information that is stored in the predefined

error field if that exists.

CANopen API for .NET

64 © SYS TEC electronic GmbH 2007 L-1114e_3

Return:
N/A.

Description:
This method sends an emergency message over the CAN bus.

This method is thread-safe.

7.15 Class cLSSMaster

This reference class which provides the LSS master functionality to
configure LSS slaves.

7.15.1 Method SwitchModeGlobal()

Syntax C#:
public void SwitchModeGlobal(

enumLSSMode LSSMode_p);

Parameters:
LSSMode_p: LSS mode, i.e. either kOperation or kConfiguration.

Return:
N/A.

Description:
This method switches the LSS mode to the specified one for all LSS
slaves. The LSS mode does not correlate with the NMT state.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Constant Description
kOperation LSS mode OPERATION.
kConfiguration LSS mode CONFIGURATION.

Table 18: Constants of enumLSSMode

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 65

7.15.2 Method BeginSwitchMode()

Syntax C#:
public IAsyncResult BeginSwitchMode(

ref tLSSAddress LSSAddress_p,
AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
LSSAddress_p: LSS address of a CANopen device which shall be

switched to LSS mode CONFIGURATION.
delegateAsyncCallback_p: Delegate which will be called when the process has

finished. Specifying a null reference is allowed. The
delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndSwitchMode() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of switching the LSS mode selectively
for the specified LSS address to CONFIGURATION. When the
process finishes the specified AsyncCallback delegate will be called.

This method does not block until the process is finished. The
application must call the method EndSwitchMode() with the returned
IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Field Type Description
m_dwVendorId uint Vendor ID (object 0x1018/1)
m_dwProductCode uint Produkt code (object 0x1018/2)

CANopen API for .NET

66 © SYS TEC electronic GmbH 2007 L-1114e_3

Field Type Description
m_dwRevision uint Revision number (object 0x1018/3)
m_dwSerNum uint Serial number (object 0x1018/4)

Table 19: Fields of tLSSAddress

7.15.3 Method EndSwitchMode()

Syntax C#:
public bool EndSwitchMode(

IAsyncResult pAsyncResult_p);

Parameters:
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginSwitchMode().

Return:
bool: true if succeeded, false if process timed out, i.e. no

LSS slave with the specified LSS address responded
the switch mode command.

Description:
This method waits until the process is finished and returns true if it
completes successfully.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

7.15.4 Method BeginInquireIdentity()

Syntax C#:
public IAsyncResult BeginInquireIdentity(

enumLSSInquiryService Services_p,
AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
Services_p: The specified services, i.e. identity values like vendor

or node ID, will be inquired.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 67

delegateAsyncCallback_p: Delegate which will be called when the process has
finished. Specifying a null reference is allowed. The
delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndInquireIdentity() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of inquiring the specified services from
the LSS slave which is in configuration mode. It is only allowed that
exactly one LSS slave is in configuration mode, when this method is
called. When the process finishes the specified AsyncCallback
delegate will be called.

This method does not block until the process is finished. The
application must call the method EndInquireIdentity() with the
returned IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Constant Description
kNone No service selected.
kVendorId Inquire vendor ID.
kProductCode Inquire product code.
kRevision Inquire revision number.
kSerNum Inquire serial number.
kAll All services selected.

Table 20: Constants of [Flags]enumLSSInquiryService

CANopen API for .NET

68 © SYS TEC electronic GmbH 2007 L-1114e_3

7.15.5 Method EndInquireIdentity()

Syntax C#:
public bool EndInquireIdentity(

ref tLSSAddress LSSAddress_p,
ref byte bNodeId_p,
IAsyncResult pAsyncResult_p);

Parameters:
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginInquireIdentity().

Return:
bool: true if succeeded, false if process timed out, i.e. no

LSS slave responded the inquire commands.

Description:
This method waits until the process is finished and returns true if it
completes successfully.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

7.15.6 Method BeginConfigure()

Syntax C#:
public IAsyncResult BeginConfigureSlave(

byte bNodeId_p,
bool fStore_p,
AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
bNodeId_p Node ID which shall be configured. If it equals 0xFF

it will not be configured.
fStore_p: true if new configuration shall be stored on LSS

slaves. false if configuration shall be changed
temporarily only.

delegateAsyncCallback_p: Delegate which will be called when the process has
finished. Specifying a null reference is allowed. The

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 69

delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndConfigureSlave() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of configuring the node ID of the LSS
slave which is in configuration mode. It is only allowed that exactly
one LSS slave is in configuration mode. When the process finishes
the specified AsyncCallback delegate will be called.

This method does not block until the process is finished. The
application must call the method EndConfigureSlave() with the
returned IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

7.15.7 Method BeginConfigure()

Syntax C#:
public IAsyncResult BeginConfigureSlave(

byte bNodeId_p,
ref tLSSBitTiming BitTiming_p,
short wSwitchDelay_p,
bool fStore_p,
AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
bNodeId_p Node ID which shall be configured. If it equals 0xFF

it will not be configured.
BitTiming_p: Reference to a value class which contains the bit

timing.

CANopen API for .NET

70 © SYS TEC electronic GmbH 2007 L-1114e_3

wSwitchDelay_p: Delay in [ms] between the configuration of the remote
bit timing and the local activation of the new bit
timing.

fStore_p: true if new configuration shall be stored on LSS
slaves. false if configuration shall be changed
temporarily only.

delegateAsyncCallback_p: Delegate which will be called when the process has
finished. Specifying a null reference is allowed. The
delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndConfigureSlave() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of configuring the node ID of the LSS
slaves which are in configuration mode. It is only allowed that exactly
one LSS slave is in configuration mode, if the node ID shall be
configured. When the process finishes the specified AsyncCallback
delegate will be called.

This method does not block until the process is finished. The
application must call the method EndConfigureSlave() with the
returned IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Field Type Description
m_bTableSelector byte Baudrate table selector (currently ignored,

because only CiA BTR table is
supported)

m_bTableIndex byte Index of baudrate table

Table 21: Fields of tLSSBiTiming

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 71

7.15.8 Method EndConfigureSlave()

Syntax C#:
public bool EndConfigureSlave(

ref enumLSSConfigureState State_p,
ref byte bErrorCode_p,
ref byte bSpecificErrorCode_p,
IAsyncResult pAsyncResult_p);

Parameters:
State_p: State of the configuration. If this method returns false,

this parameter contains the failed configure slave
command.

bErrorCode_p: Error code, which was passed by the LSS slave.
bSpecificErrorCode_p: Specific error code, which was passed by the LSS

slave. This is a manufacturer specific error code which
is valid if bErrorCode_p equals 255.

pAsyncResult_p: Object of interface IAsyncResult which was returned
by the method BeginConfigureSlave().

Return:
bool: true if succeeded, false if process timed out, i.e. no

LSS slave responded the configure slave commands.

Description:
This method waits until the process is finished and returns true if it
completes successfully.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Constant Description
kIdle Idle, i.e. no configuration active.
kNodeId Configuration of node ID is/was active.
kConfigureBitTiming Configuration of bit timing is/was active.
kActivateBitTiming Activation of bit timing is/was active.
kStore Storing of configuration is/was active.

Table 22: Constants of enumLSSConfigureState

CANopen API for .NET

72 © SYS TEC electronic GmbH 2007 L-1114e_3

7.15.9 Method BeginIdentifySlave()

Syntax C#:
public IAsyncResult BeginIdentifySlave(

AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Parameters:
delegateAsyncCallback_p: Delegate which will be called when the process has

finished. Specifying a null reference is allowed. The
delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndIdentifySlave() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of identifying LSS slaves without a
valid node ID. When the process finishes the specified AsyncCallback
delegate will be called.

This method does not block until the process is finished. The
application must call the method EndIdentifySlave() with the returned
IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

7.15.10 Method BeginIdentifySlave()

Syntax C#:
public IAsyncResult BeginIdentifySlave(

ref tLSSIdentifyParam IdentifyParam_p,
AsyncCallback delegateAsyncCallback_p,
object pAsyncState_p);

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 73

Parameters:
IdentifyParam_p: LSS address range. Vendor ID and product code are

fixed, but revision and serial number may be ranges.
delegateAsyncCallback_p: Delegate which will be called when the process has

finished. Specifying a null reference is allowed. The
delegate may be called within the CANopen instance's
process thread. Therefore it is only allowed to call the
CANopen method EndIdentifySlave() within the
delegate.

pAsyncState_p: Associated application specific object.

Return:
IAsyncResult: Object of interface IAsyncResult, which may be used

to wait asynchronously for the end of the process.

Description:
This method starts the process of identifying LSS slaves with the
specified LSS address range. When the process finishes the specified
AsyncCallback delegate will be called.

This method does not block until the process is finished. The
application must call the method EndIdentifySlave() with the returned
IAsyncResult afterwards.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Field Type Description
m_dwVendorId uint Vendor ID (object 0x1018/1)
m_dwProductCode uint Produkt code (object 0x1018/2)
m_dwRevisionLow uint Lower bound of revision number (object

0x1018/3)
m_dwRevisionHigh uint Upper bound of revision number (object

0x1018/3)
m_dwSerNumLow uint Lower bound of serial number (object

0x1018/4)
m_dwSerNumHigh uint Upper bound of serial number (object

0x1018/4)

Table 23: Fields of tLSSIdentifyParam

CANopen API for .NET

74 © SYS TEC electronic GmbH 2007 L-1114e_3

7.15.11 Method EndIdentifySlave ()

Syntax C#:
public bool EndIdentifySlave(

IAsyncResult pAsyncResult_p);

Parameters:
pAsyncResult_p: Object of interface IAsyncResult which was returned

by the method BeginIdentifySlave().

Return:
bool: true if succeeded, false if process timed out, i.e. either

no LSS slave with the appropriate LSS address
responded the identify slave command or no LSS
slave without a valid node ID exists in the network.

Description:
This method waits until the process is finished and returns true if it
completes successfully.

This method is NOT thread-safe. It is only reentrant for different
CANopen instances.

Class reference

L-1114e_3 © SYS TEC electronic GmbH 2007 75

CANopen API for .NET

76 © SYS TEC electronic GmbH 2007 L-1114e_3

Glossary

CiA CAN in Automation international users’ and
manufacturers’ group (www.can-cia.org)

CCM CANopen controlling module

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtime

CLS Common Language Specification

CTS Common Type System

COB Communication object

DCF Device configuration file (generated by configuration
tools)

DLL Dynamic linked library

GAC Global assembly cache

HMI Human machine interface

LSS Layer setting services

NMT Network Management

node an arbitrary CANopen device. Often a NMT slave

OD CANopen object dictionary

PDO Process Data Object

SDO Service Data Object

SRD SDO requesting device

References

L-1114e_3 © SYS TEC electronic GmbH 2007 77

References

[1] CANopen Application Layer and Communication Profile, CiA
DSP301, Version 4.1 21. February 2006, CAN in Automation
e.V.

[2] CANopen User Manual, Software Manual, L-1020, SYS TEC
electronic GmbH, Greiz

[3] Microsoft Visual C/C++ Runtime 2005 SP 1 (it is included as
redistributable package in Visual Studio 2005 Professional
Edition or available from
http://www.microsoft.com/downloads/details.aspx?FamilyID=20
0b2fd9-ae1a-4a14-984d-389c36f85647)

Index

L-1114e_3 © SYS TEC electronic GmbH 2007

CANopen API for .NET

 © SYS TEC electronic GmbH 2007 L-1114e_3

Suggestions for Improvement

L-1114e_3 © SYS TEC electronic GmbH 2007

Document: CANopen API for .NET
Document number: L-1114e_3, preliminary Edition March 2010

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:

Customer number:

Name:

Company:

Address:

Return to: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY
Fax : +49 (0) 36 61 / 62 79 99

Published by

© SYS TEC electronic GmbH 2007
Ordering No. L-1114e_3

Printed in Germany

