

CAN-Ethernet-Gateway V2

System Manual

Edition December 2014

SYS TEC electronic GmbH
Am Windrad 2 · 08468 Heinsdorfergrund · Deutschland
Telefon: +49 3765 38600-0 · Fax: +49 3765 38600-4100

Web: http://www.systec-electronic.com · Mail: info@systec-electronic.com

SYS TEC electronic GmbH – Systems House for Distributed Automation

http://www.systec-electronic.com/
mailto:info@systec-electronic.com

L-1294e_10 © SYS TEC electronic GmbH 2014

Status / Changes

Status: released

Date/ Version Section Change Editor

16.05.2011 Completion Stein

16.04.2012 1.2.2 Updated list of CAN software Stein

 3 Adjusted description Stein

26.04.2012 all Adjust text formatting Glau

11.06.2013 9 Added section about ASCII
protocol

Stein

 6.4.7 Added subsection about ASCII
server configuration

Stein

08.05.2014 9 ASCII protocol extended Stein

03.06.2014 9 ASCII format description for
firmware 1.2.2

Stein

 6.4.5 Added hint about BTP/TCP
and EthCan.dll

Stein

12.06.2014 9 Link to ASCII parser demo
added

Stein

17.09.2014 6.5, 6.6 Note about INI-Format: Filter
delimeter is INI file comment
sign; Adjusted examples

Stein

24.11.2014 6.4.1 Added option UserBaud Stein

15.12.2014 6.4.7 Added option Timestamp Stein

 9.2.1 Added timestamp description Stein

L-1294e_10 © SYS TEC electronic GmbH 2014

Product names used in this manual which are also registered trademarks have not
been marked additionally. The missing © mark does not imply that the trade name is
unregistered. Nor is it possible to determine the existence of any patents or
protection of inventions on the basis of the names used.

All the information in this manual has been checked carefully and is believed to be
correct. However, it is expressly stated that SYS TEC electronic GmbH does not
assume warranty or legal responsibility or any liability for consequential damages
which result from the use or contents of this user manual. The information contained
in this manual can be changed without prior notice. Therefore, SYS TEC electronic
GmbH shall not accept any obligation.

Furthermore, it is expressly stated that SYS TEC electronic GmbH does not assume
warranty or legal responsibility or any liability for consequential damages which result
from incorrect use of the hardware or software. The layout or design of the hardware
can also be changed without prior notice. Therefore, SYS TEC electronic GmbH shall
not accept any obligation.

 Copyright 2014 SYS TEC electronic GmbH. All rights reserved. No part of this
manual may be reproduced, processed, copied or distributed in any way without prior
written permission of SYS TEC electronic GmbH.

Contact

Address: SYS TEC electronic GmbH
Am Windrad 2
08468 Heinsdorfergrund
GERMANY

Offer-Hotline:
+49 3765 / 38600-2110
info@systec-electronic.com

Technical Support: +49 3765 / 38600-2140

support@systec-electronic.com

Fax: +49 3765 / 38600-4100

Website: http://www.systec-electronic.com

mailto:info@systec-electronic.de
http://www.systec-electronic.com/

Table of Contents

L-1294e_10 © SYS TEC electronic GmbH 2014

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 BASICS ... 1
1.2 APPLICATION AREAS .. 2

1.2.1 Connection of two CAN-networks via Ethernet ... 2
1.2.2 Remote Diagnosis and Configuration of CAN-Networks ... 3

2 SCOPE OF DELIVERY ... 4

3 TECHNICAL DATA ... 5

4 IMPLEMENTATION .. 7

4.1 POWER SUPPLY ... 7
4.2 NETWORK CONNECTION .. 7

4.2.1 CAN-Bus Connection .. 7
4.2.2 Ethernet-Connection ... 7
4.2.3 USB-Device Interface .. 8

4.3 STATUS DISPLAY ... 8
4.4 BUTTONS .. 8
4.5 IMPLEMENTATION ... 9

4.5.1 Standard Configuration ... 9
4.5.2 Initial Configuration via USB-Device-Interface .. 9
4.5.3 Configuration and Operation through Telnet.. 12

5 DEVICE FUNCTION .. 13

5.1 OVERVIEW.. 13
5.2 INTERFACES ... 13

5.2.1 Basic Concept .. 13
5.2.2 UDP/TCP-Server Interface ... 14
5.2.3 UDP/TCP-Client Interface .. 14
5.2.4 CAN-Interface... 14
5.2.5 Data logger-Interface .. 14

5.3 FILTERING .. 15
5.4 FILE SYSTEM .. 15

5.4.1 Layout .. 15
5.5 DESCRIPTION OF IMPORTANT COMMANDS .. 16

5.5.1 cd ... 16
5.5.2 ls ... 16
5.5.3 rm ... 16
5.5.4 cat .. 16
5.5.5 version ... 17
5.5.6 exit ... 17
5.5.7 reboot .. 17
5.5.8 gatewayconfig .. 17

6 GATEWAY CONFIGURATION ... 18

6.1 BASICS ... 18
6.2 SECTION [INTERFACES] ... 18
6.3 SECTION [CONNECTIONS] .. 18
6.4 SECTION [INSTANCEX] ... 19

Table of Contents

L-1294e_10 © SYS TEC electronic GmbH 2014

6.4.1 Instance-Type CAN ... 19
6.4.2 Instance-Type DLOG .. 21
6.4.3 Instance-Type BTP_UDP_CAN_SRV .. 21
6.4.4 Instance-Type BTP_UDP_CAN_CLIENT .. 21
6.4.5 Instance-Type BTP_TCP_CAN_SRV ... 21
6.4.6 Instance-Type BTP_TCP_CAN_CLIENT ... 22
6.4.7 Instance-Type ASCII_TCP_SRV ... 22

6.5 FILTERING .. 22
6.6 SAMPLE FOR A CUSTOMER-SPECIFIC CONFIGURATION-SCRIPT ... 23
6.7 CREATION OF A CONFIGURATION-SCRIPT .. 25

7 ERROR PROCESSING ... 26

7.1 ERROR SIGNALS OF THE CAN-ETHERNET-GATEWAY V2 .. 26
7.2 ERROR MESSAGES VIA CAN ... 27
7.3 STATUS OVERVIEW.. 27

8 SOFTWARE SUPPORT .. 28

8.1 CONNECTION OF CAN-ETHERNET-GATEWAYS V2 TO THE PC ... 28
8.2 DRIVER INSTALLATION ON WINDOWS ... 28
8.3 THE DYNAMIC LINKED LIBRARY ETHCAN.DLL .. 29

8.3.1 The Concept of EthCan.Dll ... 29
8.3.2 The Function Interface of the EthCan.Dll ... 30

8.3.2.1 EthCanGetVersion .. 30
8.3.2.2 EthCanInitHardware ... 30
8.3.2.3 EthCanDeinitHardware .. 34
8.3.2.4 EthCanReadCanMsg ... 36
8.3.2.5 EthCanWriteCanMsg ... 38
8.3.2.6 EthCanGetStatus .. 39
8.3.2.7 EthCanGetConnectionState .. 41
8.3.2.8 EthCanResetCan .. 42

8.3.3 Description of Error Codes ... 43
8.3.4 Description of CAN-Error Codes ... 45
8.3.5 Application of DLL-Functions ... 47

8.3.5.1 Demo-Project .. 47

9 ASCII-PROTOCOL .. 49

9.1 ESTABLISHING CONNECTION ... 49
9.2 TRANSMISSION FORMAT .. 49

9.2.1 CAN-Messages .. 49

10 FIRMWARE UPDATE ... 51

10.1 PREPARATION .. 51
10.2 FIRMWARE DOWNLOAD ... 51

Index of Figures and Tables

L-1294e_10 © SYS TEC electronic GmbH 2014

Index of Figures

Figure 1: Transparent Connection of two CAN .. 2

Figure 2: Remote Diagnosis of CAN-Networks using a PC ... 3

Figure 3: Device View .. 6

Figure 4: Configuration of the Tera Term (1) ... 10

Figure 5: Configuration of the Tera Term (2) ... 10

Figure 6: Start message of the CAN-Ethernet-Gateway V2 11

Figure 7: Checking the Current Configuration ... 12

Figure 8: Principle of the CAN-Ethernet-Gateway V2 .. 13

Figure 9: Construction of the Hardware-Parameter Structure 31

Figure 10: Transfer Protocols of the CAN-Ethernet-Gateway V2 31

Figure 11: Connection State of the CAN-Ethernet-Gateway V2 32

Figure 12: Structure of a CAN-Message.. 37

Figure 13: Structure of the CAN-TimeStamp ... 37

Figure 14: Structure of the CAN-Status-Structure ... 40

Figure 15: Desktop-Link for Demo-Program ... 48

Index of Figures and Tables

L-1294e_10 © SYS TEC electronic GmbH 2014

Index of Tables

Table 1: Configuration of the CAN-Plug Connection .. 7

Table 2: Configuration of the Ethernet-Plug Connection .. 7

Table 3: Meaning of Display Elements ... 8

Table 4: Meaning of the Key ... 8

Table 5: Overview on Interfaces ... 14

Table 6: Instance Types ... 18

Table 7: Options for Instance-Type CAN .. 20

Table 8: Options for Instance-Type DLOG ... 21

Table 9: Options for Instance-Type BTP_UDP_CAN_SRV...................................... 21

Table 10: Options for Instance-Type BTP_UDP_CAN_CLIENT 21

Table 11: Options for Instance-Type BTP_TCP_CAN_SRV 21

Table 12: Options for Instance-Type BTP_TCP_CAN_CLIENT 22

Table 13: Options for Instance-Type ASCII_TCP_SRV ... 22

Table 14: Construction of an Emergency-Message ... 27

Table 15: Directory Structure of the CAN-Ethernet-Gateway V2l_Utility_Disk 28

Table 16: Function range of software states .. 29

Table 17: Error Codes Interface Functions EthCan.Dll .. 43

Table 18: CAN-Error Codes ... 45

Introduction

L-1294e_10 © SYS TEC electronic GmbH 2014

1 Introduction

1.1 Basics

Until now the CAN-Ethernet-Gateway of the SYS TEC electronic GmbH has been the standard product
for the connection of CAN-networks. Yet it had reached its capacity limit, the CAN-Ethernet Gateway
V2 has been developed without these known limits.

Internet communication via TCP/IP is distributing further within the industrial sector. With CAN-
Ethernet-Gateway V2, SYS TEC electronic Ltd. presents a solution which serves for interfacing CAN-
networks through the Internet/Ethernet and to control the networks via remote access. The CAN-
Ethernet-Gateway V2 takes over communication and provides a transparent working application
interface to the user based on CAN.

A transparent, protocol-independent transmission of the CAN-Messages takes place, which serves for
a large application area. Thus the CAN-Ethernet-Gateway can be applied with different CAN-protocols
(e.g. CANopen, SDS, J1939, DeviceNet or company-specific protocols etc.)

The CAN-Ethernet-Gateway V2 can be applied with a transfer rate up to 1MBit/s within CAN-networks
according to CAN-specifications 2.0A (11-Bit CAN-identifier)) and 2.0B (29-Bit CAN-Identifier). For
each CAN-Message, a TimeStamp can be generated and transferred together with the date through
the CAN-Ethernet-Gateway V2.

The CAN-Ethernet-Gateway V2 can be set up via an asynchronous serial interface (UART to RS232
incl. hardware flow control) or a Telnet-connection. The user is able to adjust the functions of the CAN-
Ethernet-Gateway V2 to the particular application area.

For the communication between the CAN-Ethernet-Gateways V2, an UDP/IP-based network protocol
(BTP = Block Transfer Protocol) is used. Therewith CAN-Messages are transferred with a minimal time
lag within the Ethernet. Time for establishing and cancelling of network connections of the TCP/IP-
protocol is dropped.
There is also the opportunity to transfer the CAN-Messages via TCP/IP Network-protocol.

The design of the Gateway-Firmware is aligned with a high data throughput. The optimized buffer
management works with a minimal effort for copying and buffering of data. Peak loads within the CAN-
networks are covered. In case of a high data volume, several CAN-Messages are summarized to a
UDP or TCP package and transferred in block. The CAN-Ethernet-Gateway V2 recognizes errors and
sends Can-Messages (error messages) which contain the error reason. The CAN-identifier to be used
for the error message) can be configured (see section 6.2).

Introduction

L-1294e_10 © SYS TEC electronic GmbH 2014

1.2 Application Areas

1.2.1 Connection of two CAN-networks via Ethernet

A typical application is the connection of two CAN-networks via Ethernet through great distances.
There is a CAN-Ethernet-Gateway V2 processing in each CAN-network. CAN-Messages are
transferred transparently between the CAN-Ethernet-Gateways V2. The CAN-Ethernet-Gateways V2
firmware allows for a filtering of CAN-Messages to be transferred, so that only relevant data are
transferred via Ethernet.

The principal opportunities of network configuration with CAN-Ethernet-Gateways V2 are demonstrated
in Figure 1 and Figure 2 below:

Figure 1: Transparent Connection of two CAN

Intranet

CAN-Ethernet

Gateway V2

CAN-Ethernet

Gateway V2

CAN - Bus 1

CAN - Bus 2

Ethernet

Ethernet

CAN-Device C CAN-Device D

CAN-Device A CAN-Device B

Introduction

L-1294e_10 © SYS TEC electronic GmbH 2014

1.2.2 Remote Diagnosis and Configuration of CAN-Networks

A further application exists in the connection of a CAN-network with a PC. The user exclusively needs
the network connection via Ethernet, to connect with the distant Can-network. A CAN-hardware is
needed on the PC. A virtual CAN-Ethernet-Gateway as PC-software (DLL) is available under MS-
Windows. The interface of the virtual CAN-Ethernet-Gateway V2 conforms to a CAN-driver.

Therewith it is possible to use CAN-standard programs that use a CAN-driver (e.g. CANopen
configuration tools as ProCANopenTM or CAN-Tools from Port, further products upon request).

The virtual CAN-Ethernet-Gateway for PC extends the CAN-network through the
Internet/Intranet/Ethernet until the office and therefore allows for new opportunities of configuration and
diagnosis of CAN-networks in the field level. The PC in the control level requires an Ethernet-
connection to the field level by offering the comfort of established CAN and CANopen tools.

Function and parameter of the Gateway can be changed remote-controlled via the Telnet-Protocol.

Figure 2: Remote Diagnosis of CAN-Networks using a PC

Intranet

or Internet virtual Gateway

CAN to Ethernet

Service PC

CAN-Ethernet

Gateway V2

CAN-Ethernet

Gateway V2

Ethernet

Ethernet

CAN - Bus 1

CAN - Bus 2

CAN-Device C CAN-Device D

CAN-Device A CAN-Device B

Scope of Delivery

L-1294e_10 © SYS TEC electronic GmbH 2014

2 Scope of Delivery

The delivery of the CAN-Ethernet-Gateways V2 includes:

- 3004010 CAN-Ethernet-Gateway V2 1xCAN (Standard Version)

inside enclosure for carrier rail construction, incl. a 2-pin peelable bolted connection
and a 2x5 pol. control spring connection

or

- 3004011 CAN-Ethernet-Gateway V2 2xCAN (Standard Version)

inside enclosure for carrier rail construction, incl. a 2-pin peelable bolted connection
and a 2x5 pol. control spring connection

or

- 3004013 CAN-Ethernet-Gateway V2 1xCAN (Extended Version)

inside enclosure for carrier rail construction, incl. a 2-pin peelable bolted connection
and a 2x5 pol. control spring connection

or

- 3004014 CAN-Ethernet-Gateway V2 2xCAN (Extended Version)

inside enclosure for carrier rail construction, incl. a 2-pin peelable bolted connection
and a 2x5 pol. control spring connection

- WK806 USB-connection cable plug series - plug series B 1,8m
- L-1314 Product insert sheet

Technical Data

L-1294e_10 © SYS TEC electronic GmbH 2014

3 Technical Data

The CAN-Ethernet-Gateway V2 exhibits the following technical data and
functionalities :

 System software: Linux

 Control and monitor of remote CAN-networks via the internet

 Connection of two CAN-networks

 Gateway configurable via Telnet,, FTP (remote maintenance) or serial interface via USB-
Connector

 File system for configuration data

 Flexible configuration through implementation of several interfaces (see section 4.2)

 Large filter mechanisms for CAN-Messages

 Generation of a timestamp for CAN-Messages

 Connection to Windows-Application programs for CAN and CANopen

 Illuminating diodes (LED) for illumination of the Gateway, 8 St. in Standard Version, 12St. in
Extended Version

 Generation of CAN-error messages

 High data throughput

 10Base-T/100Base-TX interface (10/100Mbit/s) with RJ45-Connector

 2 CAN-interfaces acc. to CiA1 102 up to 1MBit/s, Highspeed CAN acc. to ISO11898-1/2, DC-
coupled

 2 CAN-Bus- plug-clamping connections: 2x5-pin each acc. to CiA 102 or DeviceNet-Standard

 Support of 11-Bit CAN-Identifier and 29-Bit CAN-Identifier

 RS232-interface (type-depending) via USB-Device-connector with USB-serial converter or directly
at the USB-Device interface of the CPU

 Power supply: 24VDC +20% -60%, reverse-polarity protected

 Current consumption: ca. 100mA

 Power-plug connector: 2-pin. drawable bolted connection

 Size without plug connector: 70 x 100 x 61 (L x B x H) mm³ for DIN/EN-Carrier rail construction

 Enclosure protection degree: IP20

 Operating temperature range: 0°C bis +70°C

1 CiA, CAN in Automation, international users and manufacturers group

Technical Data

L-1294e_10 © SYS TEC electronic GmbH 2014

Figure 3: Device View

Types of development

Basic Variant:

- Power Supply
- CPU-Core with 32MiB SDRAM (32bit) and 4MiB Flash(16bit)
- Ethernet-Interface
- 1x or 2x CAN-Interface, DC-coupled
- USB-Connector connected with microcontroller-internal USB-Device-Interface
- 6 LEDs placed next to USB-interface

Full Variant:

- Parts of the Basic Variant (except LEDs)
- 10 LEDs placed at module front cover
- Real time clock with battery back-up
- 2kiB EEPROM for data from user-applications
- USB via USB-Serial Converter at DRxD/DTxD of the microcontroller

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

4 Implementation

4.1 Power Supply

For the operation of the device, a direct voltage of 24V (60% to +20%) is needed. The current
consumption of the device is about 100mA. Connection occurs through a 2-pin, peelable bolted
connection. The connection is marked on device ("+" = "L+" / "-" = "0G"). The correct connection of the
supply voltage is signalized via the voltmeter “power” .

4.2 Network Connection

4.2.1 CAN-Bus Connection

For the CAN-network, two 2x5-pin peelable push terminal connectors are available. (Fitting plug:
Weidmüller Minimate B2L 3.5/10). The configuration of the array equals the DeviceNet or CANopen-
Standard respectively. All Pins of both arrays on the plugs are connected with each other. Therefore it
is possible to connect the Bus through at the module.

The power supply for the CAN-Bus (Pin 5A/5B at 2x5-pol. plug connector) is disconnected within the
gateway. The supply voltage of both DC-decoupled channels is energized internally via 2 DC/DC-
converters. The shielded connector only serves for protection of the respective CAN-channel. There is
no connection between the shield-connectors of CAN0, CAN1, USB and Ethernet. The shield therefore
is to connect additionally with PE near the module.

2x5-pin. Name Description

1 V-(CAN_GND) CAN Ground

2 CL (CAN_L) CAN_L bus line

3 SH (CAN_SHLD) CAN Shield

4 CH (CAN_H) CAN_H bus line

5 V+ (CAN_V+) disconnected

Table 1: Configuration of the CAN-Plug Connection

4.2.2 Ethernet-Connection

The Ethernet (10Base-T/100Base-TX) is connected by means of a usual CAT 3 or CAT 5network
cable with a RJ45-plug. For the direct connection (without hub or switch) of a CAN-Ethernet-Gateway
V2 with a PC, a Crosslink Cable is needed. The Ethernet-connection is DC-decoupled from the CAN-
Ethernet Gateway V2.

Pin Name Description

1 TX+ Transmit Data +

2 TX- Transmit Data -

3 RX+ Receive Data +

4 n.c. Disconnected

5 n.c. Disconnected

6 RX- Receive Data +

7 n.c. Disconnected

8 n.c. Disconnected

Table 2: Configuration of the Ethernet-Plug Connection

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

4.2.3 USB-Device Interface

The CAN-Ethernet-Gateway V2 features a USB Device-Interface which is connected to it via a USB-
plug of Type B. This interface allows for configuration of the CAN-Ethernet Gateways V2. This
connection is especially made for initial configuration (see section 3.5). The USB-Device-Interface is
not DC-decoupled.

4.3 Status Display

To display the operating status, 10 or 8 LEDs are needed (see Table 3). The displays are
summarized on the LED-board according to the CAN-nets and represent their status. Furthermore,
there is a diagnosis-LED of the gateway application available.

 Only available at completion stage

 At the completion stage, both Ethernet-LEDs are available at the connector and board as
well

LED-Description Definition

Power/24V Power Supply OK

CAN state 0/1 CAN-Bus 0/1 in use

CAN error 0/1 Error during data transfer to CAN-Bus 0/ 1 (see section 7.1)

Diagnose Diagnosis-LED of the gateway application

Link Green: Ethernet-link available, Cabling OK
Flashing: Ethernet-traffic
Off: no Ethernet-link

Speed Orange: 100MBit/s
Off: 10MBit/s

CAN traffic 0/1 Signaling of data traffic on the CAN-Bus 0/1

Table 3: Meaning of Display Elements

4.4 Buttons

The CAN-Ethernet-Gateway V2 has two key buttons (see Table 4), defined as follows:

Key Button-No.: Description Definition

1 Reset Short press will reset the module and causes a restart

2 Boot Pressing the key during booting may cause a reset of
configuration options, to ensure access to the module in
emergency situations

Reset includes the following:

 Passwords of root and gw are deleted

 Network configuration

 Gatewayconfig

Table 4: Meaning of the Key

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

4.5 Implementation

4.5.1 Standard Configuration

Factory-provided, the CAN-Ethernet-Gateway V2 contains the following standard configurations
(preparation of a configuration-script see section 6.1):

Ethernet/Internet-configurations

IP-address of the CAN-Ethernet-Gateway V2: 192.168.10.49
Subnet-Mask: 255.255.255.0
Standard-Gateway: 192.168.10.1
DNS-Server: 192.168.10.5
CAN-Bus 0
UDP1-Server
TCP-Server
Data logger

CAN-settings

CAN-Bitrate: 1Mbit/s
CAN-Identifier for error messages 0xFC, but disabled

Serial interface via USB-Device-connection

baud rate: 115200 Baud
Data bit: 8
Parity: none
Stoppbit: 1
Protocol: none

4.5.2 Initial Configuration via USB-Device-Interface

Prior to the transfer of CAN-Messages, the CAN-Ethernet-Gateway V2 is to configure as needed. For
this purpose, the following steps are necessary:

 Install the appropriate driver for the USB-Interface: CP210x for completion or CDC-ACM for the
other case. For Linux, please use the kernel driver cp210x or cdc-acm respectively. For Windows,
both drivers are installed on the CD enclosed. Both drivers provide a serial interface that can be
accessed with a common terminal emulator.

 Connect the delivered USB-cable with the USB-Device-Interface of the CAN-Ethernet-Gateway V2
and a free USB-Interface on the PC.

 Please start a terminal program on your PC (the program „Terra Term“ is used in the following; in
case of using another terminal program, the correct settings are to take)

 Set up the interface baud rate configuration (see Figure 4 and Figure 5)

1 BTP: Block Transfer Protocol for transferring CAN-Telegrams via UDP/IP

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

Figure 4: Configuration of the Tera Term (1)

Figure 5: Configuration of the Tera Term (2)

 Please ensure that the power supply is connected correctly and switch on the supply voltage

 Please consider that only at the Full variant, the emulated serial interface is created with the
connection of the power supply and can be used immediately. The boot messages are visible at
this variant only. In the variant with CDC-ACM, the interface is not created before Linux has
booted.

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

Figure 6: Start message of the CAN-Ethernet-Gateway V2

In both cases, Login prompt appears directly after the boot process; Login and password are requested
to access the system.

The Login is gw with the standard password gw.

For administrative tasks, e.g. a firmware update, the user root with the standard password root is

intended. This user provides access to the whole system.

Note:
Take care while working as user root, as in case of non-booting, a system recovery without further

support in principle is only possible at Full variant.

As the CAN-Ethernet-Gateway V2 is based on Linux with a JFFS2-file system, there are different
commands to work with it. The most important commands are explained in the following. Busybox is

installed with a typical selection of programs that, among others, serve as navigation.

These are:

ls to display the content of the current directory,

pwd to display the current directory,

cd to change the current directory,

rm to delete a directory/data,

sync to ensure that all data of the JFFS2-file system have been stored in the non-volatile

storage (NOR-Flash).

Note: The program sync is usually not necessary, as the files are automatically fed into the flash

memory after a certain time/data volume. However, Synchronizing can be enforced by means of this
command.

A complete list of the Busybox-Programs is available on running busybox without any arguments.

For gateway configuration, the program gatewayconfig is available at /usr/sbin/. Requested without

parameters, supported options as well as the current configuration is listed, e.g.

Implementation

L-1294e_10 © SYS TEC electronic GmbH 2014

gatewayconfig
Usage: gatewayconfig <option> <value>

available options:

 ipaddr host IP address

 netmask network mask

 dnsip DNS server IP address

 gatewayip gateway IP address

Current configuration:

ipaddr=192.168.10.49

netmask=255.255.255.0

dnsip=192.168.10.5

gatewayip=192.168.10.1

Note:
gatewayip is the IP-address of the Default-IP gateway, not the one of the CAN-Ethernet gateway

itself, which is ipaddr!

At this point, the settings concerning IP-address, Network Mask, Gateway and DNS-Server should be
set up before running the program. The IP-address 0.0.0.0 signifies automatic network configuration
through DHCP.

The settings will become effective after restart. For this purpose, the command reboot can be used.

After the restart, please check the current configuration via the program gatewayconfig. Therewith,

the network configuration is finished and the gateway can be run via Ethernet (e.g. Telnet).

Figure 7: Checking the Current Configuration

4.5.3 Configuration and Operation through Telnet

At current operation of the CAN-Ethernet-Gateway V2, the configuration can be carried out via Telnet
(TCP-Port 23). The scope of operation is the same as with USB-Device-Interface. Access via Telnet
permits the configuration of remote CAN-Ethernet-Gateways V2. For it, a one-time configuration of the
IP-address (see section 4.5.3) is needed. Without this one-time configuration of the IP-address, the
CAN Ethernet-Gateway V2 is accessible through its Standard-configuration (see section 4.5.1).
When working on Linux, the program telnet can be used. A default windows installation already

includes a Telnet-Client. This can be accessed through telnet <Address>.Alternatively the PuTTY

application for the serial interface can be used.
After the Login, the procedure is the same as via USB-Device.

Device Function

L-1294e_10 © SYS TEC electronic GmbH 2014

5 Device Function

5.1 Overview

The CAN-Ethernet-Gateway V2 contains several interfaces for operation and control. It is structured as
follows:

CAN Interface
can1

Input filter

Output filter

Linux

Gateway

CAN Interface
can0

Input filter

Output filter

CANTelnetFTP

Ethernet

File upload/
download

Shell access BTP 1 BTP n...

Data logger

Figure 8: Principle of the CAN-Ethernet-Gateway V2

5.2 Interfaces

5.2.1 Basic Concept

The exchange of CAN-Messages occurs through interfaces. An interface delivers the connection
between the gateway and a corresponding remote station, which has a different function. Several
interfaces can be enabled.

The most important interfaces in this context are CAN for the CAN-Interface and BTP_UDP_CAN_SRV

resp. BTP_TCP_CAN_SRV for an Ethernet-Interface according to the Block-Transfer-Protocol. While

the CAN-Interface is sending and receiving messages through the hardware to a CAN-Net, the UDP-
Interface is responsible for the tunneling of messages via UDP/IP/Ethernet.

Device Function

L-1294e_10 © SYS TEC electronic GmbH 2014

Available interfaces Type

CAN CAN-Bus

UDP-Client BTP_UDP_CAN_CLIENT

UDP-Server BTP_UDP_CAN_SRV

TCP-Client BTP_TCP_CAN_CLIENT

TCP-Server BTP_TCP_CAN_SRV

Data logger DLOG

Table 5: Overview on Interfaces

The UDP-interface is transferring the CAN-Messages based on the UDP-Protocol while the TCP-
Interface is using TCP as transport protocol instead. Both types of interfaces are identical in their
function but differ regarding their rate of transmission.

The data logger-interface stores CAN-Messages into a log file to be configured. Thereby, unwanted
CAN-Messages can be filtered out.

All interfaces are instanceable and therefore can be used several times, if needed.

5.2.2 UDP/TCP-Server Interface

The UDP-Server-Interface (BTP_UDP_CAN_SRV) waits for UDP-connection requests from another

gateway and finally generates a new UDP-connection that is used for an exchange of CAN-
Messages. According to that, the TCP-Server (BTP_TCP_CAN_SRV) waits for TCP-connection

requests.

To be able to react on TCP- as well as UDP-based requests, a TCP - as well as a UDP-Server-
Interface - have to exist at the gateway.

The creation of interfaces occurs in the configuration file (see section 6 “Gateway”).

5.2.3 UDP/TCP-Client Interface

The UDP-Client Interface provides a tunnel via UDP/IP/Ethernet to enable sending and receiving of
messages. At the TCP-Client Interface, the tunnel is operated via TCP/IP/Ethernet.

The creation of interfaces occurs in the configuration file (see section 6 “Gateway”).

5.2.4 CAN-Interface

A CAN-Interface delivers CAN-Messages to the gateway where they can be processed via
Ethernet, data logger or a further CAN-Bus.

The creation of interfaces occurs in the configuration file (see section 6 “Gateway”).

5.2.5 Data logger-Interface

The data logger-Interface allows for storing messages into configurable data file. Depending on to
location within the file system, the log file is stored temporary until the next reboot or persistent in the
flash memory.

Device Function

L-1294e_10 © SYS TEC electronic GmbH 2014

The creation of interfaces occurs in the configuration file (see section 6 “Gateway”).

5.3 Filtering

Filtering is based on the CAN-Identifiers. The CAN-Ethernet-Gateway V2 processes all sent and
received data using of filter lists within the instances. Therewith, data transfer can be reduced, e.g. only
messages of a special group of CAN-Identifiers (CAN-IDs) are forwarded. According to the type of
instance, separated filters can be configured for receiving or sending. Furthermore, 11Bit and 29 Bit
CAN-IDs are configured separately.
Key names for the single instance types are described in section 6.4. The general syntax is
demonstrated in section 6.5.

5.4 File System

5.4.1 Layout

There is a file system integrated in the CAN-Ethernet-Gateway V2 that allows for configuration
changes of the gateway regarding the operating time. Furthermore, the opportunity does exist to store
files non-volatile in a NOR-flash.

Structure of the file system (excerpt):
.

|-- bin

|-- dev

|-- etc

| `-- ceg

|-- home

|-- proc

|-- sbin

|-- sys

|-- tmp

|-- usr

| |-- bin

| `-- sbin

`-- var

 `-- log

The tree below /home represents the users area where, among others, the gateway configuration is
stored. The directories /bin and /usr/bin contain programs, the user can use at any time. Programs
stored in /sbin and /usr/sbin have been installed for administration purposes. The directory /tmp is a file
system that is stored in the main memory and therefore can be used for temporary data. Those data
will get lost after a restart. There are several commands available for navigation within the file system
(see section 5.5).

Device Function

L-1294e_10 © SYS TEC electronic GmbH 2014

5.5 Description of Important Commands

There is busybox available at the CAN-Ethernet-Gateway V2 with a typical selection of Unix/Linux-
commands. In most cases, the programs offer a bit less functionality than its counterpart on a
Desktop-Linux. However, the most important functions are available on here as well.
Some commands are described in the following, to ensure a quick introduction to the topic.

5.5.1 cd

Format: cd [<dir>]

Definition: Command cd serves for change to the stated directory <dir>. Thereby, .. is the

parent directory. If cd is specified without an argument, a change to the user directory

(/home) occurs.

5.5.2 ls

Format: ls [<dir>]

Definition: Command ls shows the file of the current or indicated directory. With option -l further

information are displayed for each single file and directory
Sample:
ls -l /etc/ceg/

-rw-r--r-- 1 root root 578 Jun 10 2010 default.rc

5.5.3 rm

Format: rm <fname>

Definition: Command rm allows for deletion of files and directories. <fname> corresponds to the

name of the file to delete. Option -r (recursive) has to be specified additionally.

Alternatively, rmdir can be used for deleting directories.

Sample:

rm /home/datei deletes file file in directory /home

5.5.4 cat

Format: cat <fname>

Definition: Command cat displays the content of the file <fname>.

Sample:

cat file displays the content

Device Function

L-1294e_10 © SYS TEC electronic GmbH 2014

5.5.5 version

Format: version

Definition: Command version shows the version of the CAN-Ethernet-Gateway V2-Firmware.

Sample:

version
V1.01

2010.07.0

CAN Ethernet Gateway V2 0.5.0-00042-g25ba83c

U-Boot version: 2010.03-00042-gacdb25b

PCB Version: 4248.1

5.5.6 exit

Format: exit

Definition: Command exit terminates the Telnet-session. Strg+D can be used alternatively.

5.5.7 reboot

Format: /sbin/reboot

Definition: Command reboot restarts the CAN-Ethernet-Gateway V2 (a software reset is

asserted). The absolute path is needed, as directory /sbin does not exist in PATH for

the restricted user.

5.5.8 gatewayconfig

Format: /usr/sbin/gatewayconfig

Definition Command gatewayconfig serves for network configuration through the bootloader.

Without an argument, options available as well as the current configuration are
displayed. As root rights are needed for it, this program has been installed with the
SUID-Bit and can be used by everyone.

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

6 Gateway Configuration

6.1 Basics

The configuration of the CAN-Ethernet-Gateway V2 can occur through different ways; via the USB-
Interface, with a terminal program (see section 4.5.2), a Telnet-connection via Ethernet (see section
4.5.3) or through download of the configuration file via FTP.

The configuration of the CAN-Ethernet-Gateway V2 occurs through a configuration file. With just a few
exceptions, the options are optional and are preset with appropriate standard values, if they have not
been defined yet.
The format corresponds to the Windows-INI-format. The configuration file is divided in several sections
that configure different parts respectively.

6.2 Section [Interfaces]

Within this section, the single interfaces or instances are defined. The key is a serial number starting at
0. The value to it is the name of the instance and the type, separated through spaces.

The type is special as the name as well defines the CAN-instance of the driver. Therefore, CAN0
means CAN-Bus 0 and CAN1 uses CAN-Bus 1.

Identifier type Interface type

CAN Can-Interface

DLOG Data logger

BTP_UDP_CAN_SRV BTP-UDP-Server

BTP_UDP_CAN_CLIENT BTP-UDP-Client

BTP_TCP_CAN_SRV BTP-TCP-Server

BTP_TCP_CAN_CLIENT BTP-TCP-Client

Table 6: Instance Types

Sample:
[Interfaces]

0=CAN0 CAN

1=Btp BTP_UDP_CAN_SRV

2=Remote1 BTP_TCP_CAN_CLIENT

3=Dlog DLOG

With this configuration, a CAN-Interface, BTP-UDP-Server, UDP-TCP-Client and a data logger are set
up.
Configuration to the single interfaces is described separately.

6.3 Section [Connections]

In this section, the single instances are connected with each other. For each instance a list can be
defined, from which other instances messages shall be received.

Sample (continued):
[Connections]

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

CAN0=Btp

DLog=CAN0 Btp

Btp=CAN0

Remote1=CAN0

In this example, all messages received through the BTP-UDP-Server are sent via CAN and reversed.
Additionally, messages from the CAN-Bus and BTP-UDP-Server are stored by data logger.
Furthermore, the messages of the CAN-Bus are sent via BTP-TCP.

6.4 Section [InstanceX]

In the sections [InstanceX] where X corresponds to the number from [Interfaces], the single instances
are configured. The concrete options differ and depend on the instance type.

6.4.1 Instance-Type CAN

Baudrate CAN-baud rate in kBaud. Can be overwritten by UserBaud.
Values allowed: 20, 50, 100, 125, 250, 500, 800, 1000
Standard: 125

UserBaud User specified bitrate. If set, any setting in Baudrate is ignored.
Standard: undefined

Upon any questions about calculation or possibility of custom bitrates
please contact the support at support@systec-electronic.com and
visit our homepage at http://www.systec-electronic.com

Acr Acceptance Code Register
Standard: 0

Amr Acceptance Mask Register
Standard: 0xFFFFFFFF

LowbufRxMaxEntries Size of the receive buffer in the CAN-driver:
Standard: 5000

LowbufTxMaxEntries Size of the send buffer in the CAN-driver:
Standard: 5000

FilterStdRejectIn Filter list with standard-CAN-IDs not allowed to be received
Standard: <empty>

FilterStdAllowIn Filter list containing Standard-CAN-IDs allowed to be received
Standard: <empty>

FilterStdRejectOut Filter list containing Standard-CAN-IDs that shall not be sent
Standard: <empty>

FilterStdAllowOut Filter list containing Standard-CAN-IDs that shall be sent
Standard: <empty>

FilterExtRejectIn Filter list containing extended CAN-IDs not allowed to be received
Standard: <empty>

FilterExtAllowIn Filter list containing extended CAN-IDs allowed to be received
Standard: <empty>

FilterExtRejectOut Filter list containing extended CAN-IDs that shall not be sent
Standard: <empty>

FilterExtAllowOut Filter list containing extended CAN-IDs that shall be sent
Standard: <leer>

ListenOnly Enables the Listen-only-Mode of the CAN-Controllers
0: disabled 1: enabled Standard: 0

EnableErrorMsg Enables sending of CAN-Error Messages
0: disabled 1: enabled Standard: 0

ErrorMsgId CAN-ID of the CAN-Error Message

mailto:support@systec-electronic.com
http://www.systec-electronic.com/

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

Only Standard-CAN-IDs supported
Standard: 0xFE

Table 7: Options for Instance-Type CAN

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

6.4.2 Instance-Type DLOG

LogFile File name of the Log-file has to be specified here!

FilterStdReject Filter list containing Standard-CAN-IDs that shall not be saved
Standard: <empty>

FilterStdAllow Filter list containing Standard-CAN-IDs to be saved
Standard: <empty>

FilterExtReject Filter list containing extended CAN-IDs to be saved
Standard: <empty>

FilterExtAllow Filter list containing extended CAN-IDs to be saved
Standard: <empty>

Table 8: Options for Instance-Type DLOG

6.4.3 Instance-Type BTP_UDP_CAN_SRV

LocalPort Port the BTP-UDP-Server is connected to
Standard: 8234

TriggerTime Indicates after how many ms the BTP-Transfer shall start at the latest
Standard: 0

TriggerCount Indicates after how many CAN-Messages the BTP-Transfer shall start at the
latest
Standard: 1

Table 9: Options for Instance-Type BTP_UDP_CAN_SRV

6.4.4 Instance-Type BTP_UDP_CAN_CLIENT

RemoteIP IP the BTP-UDP-Client shall connect to
Standard: 0.0.0.0

RemotePort Port the BTP-UDP-Client shall connect to
Standard: 8234

ReconnectionType Settings for automatic reconnection in case of connection loss
0: no reconnection
1: reconnection, if message is to be sent
2: immediate reconnection (Standard: 2)

TriggerTime Indicates after how many ms the BTP-Transfer shall start at the latest
Standard: 0

TriggerCount Indicates after how many CAN-Messages the BTP-Transfer shall start at
the latest
Standard: 1

Table 10: Options for Instance-Type BTP_UDP_CAN_CLIENT

6.4.5 Instance-Type BTP_TCP_CAN_SRV

LocalPort Port the BTP-UDP-Server is connected to
Standard: 8234

TriggerTime Indicates after how many ms the BTP-Transfer shall start at the latest
(Standard: 0)

TriggerCount Indicates after how many CAN-Messages the BTP-Transfer shall start at the
latest (Standard: 1)

Table 11: Options for Instance-Type BTP_TCP_CAN_SRV

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

Note: For a TCP BTP connection between CAN-Ethernet-Gateway V2 and a Windows PC using
EthCan.dll there can be a significant latency due to a full TCP window. To prevent this it is
recommended to set TriggerTime and TriggerCount to 10 at least.

6.4.6 Instance-Type BTP_TCP_CAN_CLIENT

RemoteIP IP the BTP-UDP-Client shall connect to
Standard: 0.0.0.0

RemotePort Port the BTP-UDP-Client shall connect to
Standard: 8234

ReconnectionType Settings for automatic reconnection in case of connection loss
0: no reconnection
1: reconnection, if message is to send
2: immediate reconnection
Standard: 2

TriggerTime Indicates after how many ms the BTP-Transfer shall start at the latest
(Standard: 0)

TriggerCount Indicates after how many CAN-Messages the BTP-Transfer shall start at
the latest (Standard: 1)

Table 12: Options for Instance-Type BTP_TCP_CAN_CLIENT

Note: For a TCP-BTP-connection between CAN-Ethernet-Gateway V2 and the CAN-Ethernet-Gateway
V1, the result can be an overload of Gateway V1 with TCP due to performance differences. To prevent
message loss and failures, it is recommended to set TriggerTime and TriggerCount to 10 at least.
According to the concrete CAN-Bus-Message volume, those values may be increased further.

6.4.7 Instance-Type ASCII_TCP_SRV

LocalPort Port the ASCII-TCP-Server is connected to
Standard: 12000

Timestamp Set to non-zero to enable sending timestamps on ASCII protocol
Standard: 0

Table 13: Options for Instance-Type ASCII_TCP_SRV

6.5 Filtering

Filtering options are the same for all instances, if supported. There are separate settings for standard-
and extended CAN-IDs (11 or 29 Bits). Settings can be made separately for sending and receiving;
e.g. which messages shall be received and which rejected. Sending and receiving may be configured
different for the particular instance. Therefore receiving for the CAN-Instance means the forwarding of
CAN-Messages from the CAN-Bus to the gateway. Sending means the forwarding of CAN-Messages
from the Gateway to the CAN-Bus.
It is therefore possible that a receiving of a message via the CAN-interface is allowed. However, the
data logger may not save the message after it has been forwarded to it.
For some instances, e.g. the data logger, there are only filter settings available for “receiving”, as the
data logger cannot create any messages by itself.
In general, there are only messages forwarded, whose ID has been accepted (Accept-Rule); but has
not been rejected explicitly (reject-rule). This means that without settings, all messages are rejected.
For all filters, the following syntax applies, which can be specified as value within the configuration file:

<FilterList> := [<FilterEntry>[;<FilterList>]]

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

<FilterEntry> := <CanIdLow>-<CanIdHigh>
<CanIdLow> lowest CAN-ID for filter area
<CanIdHigh> highest CAN-ID for filter area

e.g.
FilterStdAllowIn=0x0-0x7ff

Allows for receiving of all 11Bit CAN-IDs

FilterStdAllowIn=0x0-0x7ff

FilterStdRejectIn="0x251-0x251;0x300-0x301"

Allows for receiving of all 11Bit CAN-IDs except, 0x251 and between 0x300 and 0x301.To filter single
CAN-IDs, the same value has to be set for the lowest and highest CAN-ID,
e.g.
"0x50-0x50;" to add CAN-ID 0x50 to the filter list.

Note:
Because ';' is the comment sign in the INI file format, any filter configurations must be enclosed within
"" if more than one filter is used.

6.6 Sample for a Customer-Specific Configuration-Script

In the following a sample configuration with explanations is shown:
[Interfaces]

0=CAN0 CAN

1=Btp BTP_UDP_CAN_SRV

2=Dlog DLOG

The single interfaces are entered in this area, in this case a CAN-interface for Bus 0 (refer to section
6.2). Additionally, there is a BTP-UDP-Server and a data logger.

[Connections]

CAN0=Btp

DLog=CAN0 Btp

Btp=CAN0

In this area, the single instances are connected with each other. In the following example, CAN is
connected with BTP in both directions and the data logger receives all CAN-Messages from the CAN-
Bus and BTP.

[Instance0]

BaudRate=1000

FilterStdRejectIn="0x251-0x251; 0x300-0x301"

FilterStdAllowIn=0x0-0x7ff

FilterStdAllowOut=0x0-0x7ff

Instance 0 refers to key 0 from [Interfaces] and therefore, a CAN-interface exists. The baud rate is set
to 1000kBaud.
The filters allow for a sending and receiving of all 11Bit CAN-IDs, whereas the IDs 0x251, 0x300 and
0x301 are not accepted for receiving.

[Instance1]

LocalPort=8234

The BTP-Server uses the UDP-Port 8234 and waits for connections.

[Instance2]

FilterStdAllow="0x25A-0x25A; 0x250-0x252"

LogFile=/tmp/logfile.txt

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

The data logger saves all data in file /tmp/logfile.txt and only saves CAN-Messages with the following
IDs: 0x250, 0x251, 0x252 and 0x25a.

Gateway Configuration

L-1294e_10 © SYS TEC electronic GmbH 2014

6.7 Creation of a Configuration-Script

There is the opportunity to create or edit the configuration file directly within the Linux console. For this
purpose, access via the serial console or Telnet is necessary.
The text editors vi (a reduced variant within the busybox) and nano are installed on the module and can
be used as preferred. For further information it is referred to the particular websites
(http://www.vim.org/docs.php, http://www.nano-editor.org/docs.php).

As an alternative, the configuration can be created or edited on your PC as well and can be copied to
the gateway via FTP.

For an introduction, the standard file that is available can be copied from /etc/dec/default.rc to
/home/ceg/default.rc and edited there.

Note:
The configuration file must have the Unix-end of line (linefeed only) in either case.

http://www.vim.org/docs.php
http://www.nano-editor.org/docs.php

Error Processing

L-1294e_10 © SYS TEC electronic GmbH 2014

7 Error Processing

7.1 Error Signals of the CAN-Ethernet-Gateway V2

Errors are signalized through LED-light up or through a n entry written in the systemlog. This can be
found at /var/log/messages.

The following errors are indicated:

 Link connection impossible via BTP-Interface
Possible causes:

No connection to the configured server possible
or connection has been declined

Gateway: Entry in the systemlog

 CAN-RxBuffer-overflow, loss of CAN-Message
Possible causes:

CAN-Busload too high
Receive buffer selected too small (for settings see section 5.2.4)

Gateway: CAN-Error-LED lights up shortly

 CAN-TxBuffer-overflow
CAN-Messages are enqueued too fast in the CAN-send buffer (e.g. through high busload and low

priority of CAN-IDs to be sent)
Appropriate CAN-Message is rejected

Gateway: CAN-Error-LED lights up shortly

 BTP-TxBuffer-overflow
no CANtoBTP-buffer available -> loss of CAN-Messages
Gateway: Entry in the systemlog

 BTP-RxBuffer-overflow
no BTPtoCAN-Buffer available -> loss of CAN-Messages
Gateway: Entry in the systemlog

 Error during sending or receiving via BTP
e.g. if the receiver has no free buffer or in case of a timeout
general: CAN to TCP/IP-send buffer is rejected -> loss of CAN-Messages
Gateway: Entry in the systemlog

 CAN-Busoff Error
possible causes:

CAN-Bus-cabling,
wrong CAN-Bitrate,
Hardware-error

Gateway: CAN-Error LED lights up as long as the CAN-telegram has been sent or received
successfully.

Error Processing

L-1294e_10 © SYS TEC electronic GmbH 2014

7.2 Error Messages via CAN

To evaluate the state of the CAN-net gateway, sending of error messages (Emergency-messages)
according to the CANopen standard is possible
Via the option EnableErrorMsg ErrorMsgId during the configuration of the CAN-interface sending

of error messages can be enabled with the appropriate identifier in the CAN-Ethernet-Gateway V2. In
the standard configuration sending is disabled. The format of the error message is specified as follows:

Byte 0 1 2 3 4 5 6 7

Content Emergency-
Code

Error-
Register

Interface
number

Error-Code reserved reserved

Table 14: Construction of an Emergency-Message

The Emergency-Code can consist of the following values:

0x1000: if a new, general error has occurred
0x8140: Node comes from the CAN-Busoff
0x0000: Device has no errors

The error register is 0x80, in case that no further errors exist. The error register is 0x80, if errors do
exist and 0x00, if all errors have been fixed. In the following, the number of interface, where the error
has occurred and a bitmask that indicates which errors exist are indicated. In case of a 2-byte-long
code (Byte 0,1 and 4,5), the higher part is sent last, e.g. 00 10 for 0x1000.

The following bits of the error code are defined:
0x0000 Error-free
0x0001 Buffer overflow while receiving
0x0002 Buffer overflow while sending
0x0004 Buffer overflow in the CAN-Controller
0x0008 CAN-ACK-error (Acknowledge error)
0x0010 CAN-Warning-Limit is reached
0x0020 CAN-Passive mode is reached
0x0040 Devices in CAN-Busoff
0x0080 Error while message is sent
0x0100 Error while message is received
0x0400 Common error of the CAN-Controller, internal Hardware error of the SJA-1000 (Stuff-

Error, Form-Error, CRC-Error)

7.3 Status Overview

Script support-info at /usr/sbin/ is for support inquiries. It provides an overview on the configuration

and error messages that is saved in file /tmp/support-info.txt. This file is included in deliveries

concerning support inquiries. Additionally, information is displayed on the text console as well.

To access the script, the user has to log in via Telnet or the serial console. The command support-

info has to be executed. All information displayed can be copied directly from the terminal or Telnet

program. Alternatively, the file support-info.txt can be downloaded from the board directly using FTP.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8 Software Support

8.1 Connection of CAN-Ethernet-Gateways V2 to the PC

For the Connection of the CAN-Ethernet-Gateway V2 to the PC, a WIN32-DLL is available, which
offers a number of different export functions. This DLL allows for the development of own applications
on Windows. The CAN-Ethernet-Gateway V2 can be accessed via this Driver-DLL directly from the PC
via Ethernet.

8.2 Driver Installation on Windows

Previously, the installation of the Driver-DLL for Windows is necessary. You will find the related setup-
program on the website.

Please start the downloaded setup-program and follow the instructions as displayed. The installation by
default occurs into the following directory:

C:\Program Files\SYSTEC-electronic\CAN-Ethernet-Gateway V2l_Utility_Disk

The path for installation can be changed as desired.

Note:
Please ensure that administrator rights are needed for an installation under Windows 2000 and
Windows XP!

During the installation, the driver-DLL (EthCan.Dll) is copied into the particular Windows-System-
Directory. Furthermore, the Setup-program in the installation directory, based on the default-installation
path, generates the following directory structure:

Subdirectory Content

Demo.Prj „C“-Demo in Source for MSVC 5.0 or 6.0

Docu System-Manual CAN-Ethernet-Gateway V2

Include „C“-Header-file for the EthCan.Dll

Lib EthCan.Lib and EthCan.Dll

Table 15: Directory Structure of the CAN-Ethernet-Gateway V2l_Utility_Disk

Directory „LIB” contains the library as well as the related DLL. In directory „Include“ you find the
Header-file belonging to „EthCan.Dll“, which contains all prototypes of the PUBLIC-functions of the
DLL as well as any other data structures used. The Header-file is to include into the development
project for own applications based on the DLL. Directory „Doku“ contains the System-Manual of the
CAN-Ethernet-Gateways V2 as PDF-file.
Directory „Demo.Prj“ offers a Demo-Project in form of a Visual-Studio-Project. It contains a „C“-
Source-File as well as a relating Header-File, which shows the application of the DLL-functions in form
of a Demo-Program.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8.3 The Dynamic Linked Library EthCan.Dll

Die Dynamic Linked Library (EthCan.Dll) is a function library for application programs. It serves as
interface between the Windows-Socket and an application program. It is further responsible for
managing connected CAN-Ethernet-Gateways V2 as well as for transmission of CAN-Messages in IP-
packets and reversed.
For the inclusion of the DLL into an own project, the EthCan.Lib can be added to the project. Thereby,
the DLL is loaded automatically, when the application program is started. In case the LIB is not directly
linked to the Project, the DLL has to be loaded with the Windows-Function LoadLibrary () and the library
functions have to be added including the function GetProcAdress ().
The STDCALL-Directive of the request functions of the DLL serves for a standard request interface to
the user. It is thereby ensured that also applicants of other programming languages (e.g. Pascal) are
able to use those functions.

8.3.1 The Concept of EthCan.Dll

With file EthCan.Dll a maximum of 5 CAN-Ethernet-Gateways V2 can be requested within an
application at the same time. Furthermore, the application can access a maximum of 5 further CAN-
Ethernet-Gateways V2 that have the same remote-addresses as in application 1 as several interfaces
can be connected to the CAN-Ethernet-Gateway V2. So a multiple connection from different
applications is possible. However, it is not possible to establish several connections to the same CAN-
Ethernet-Gateway V2 from one application only.
Through the use of this DLL two states exist for each CAN-Ethernet-Gateway V2 for the software. After
starting the application program and loading the DLL, the software is in state DLL_INIT. Thereby, all
necessary resources for the DLL have been created.
If library-function EthCanInitHardware () is accessed, the software changes to HW_INIT.
Here, all resources are applied, that are necessary for communication with the CAN-Ethernet-Gateway
V2. A call of library function EthCanDeinitHardware () effects a change of state from HW_INIT back
to DLL_INIT. Only now the application program can be terminated.

State Function Range

DLL_INIT EthCanGetVersion ()
EthCanInitHardware ()

HW_INIT EthCanGetVersion ()
EthCanGetStatus ()
EthCanDeinitHardware ()
EthCanRreadCanMsg()
EthCanWriteCanMsg()
EthCanResetCan()
EthCanGetConnectionState()

Table 16: Function range of software states

If several CAN-Ethernet-Gateway V2 are used within an application, the states are considered valid for
each CAN-Ethernet-Gateway V2. While the first CAN-Ethernet-Gateway V2 is in state DLL_INIT, the
second can indicate state HW_INIT.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8.3.2 The Function Interface of the EthCan.Dll

This chapter describes the interface functions of the CAN-Ethernet-DLL in its tasks, application and
return values. The use of functions is shown through Code-Examples. All parameter values of the
functions are chosen in order that the DLL can be applied with program languages as Pascal or Visual
Basic as well.

8.3.2.1 EthCanGetVersion

Syntax:

DWORD STDCALL EthCanGetVersion (void);

Application:
DLL_INIT, HW_INIT

Definition:

Function returns the software version number of the EthCan.Dll

Parameter: none

Return Value:

The return value is the software version number in format DWORD. It is constructed as follows:

Bit 0 to 7: higher version number in binary format
Bit 8 to 15: lower version number in binary format
Bit 16 to 31: Release-version number in binary format

Application sample:

DWORD dwVersion;

char szVersion[16];

...

// get version number

dwVersion = EthCanGetVersion ();

// change into string

wsprintf(szVersion, „V%d.%02d.r%d“, (dwVersion&0xff),

 (dwVersion&0xff00)>>8, dwVersion>>16);

8.3.2.2 EthCanInitHardware

Syntax:

DWORD STDCALL EthCanInitHardware(

tEthCanHandle* pEthCanHandle_p,
tEthCanHwParam* pEthCanHwParam_p,
tEthCanCbConnectFct fpEthCanCbConnectFct_p
LPARAM pArg_p);

Application:
DLL_INIT

Definition:

This function installs all necessary data structures and establishes a connection to the addressed
CAN-Ethernet-Gateway V2. The parameters needed for it, as for example IP-address, port-number

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

etc. are transferred as address on a hardware parameter structure (parameter 2). While applying the
function, it is in general differed between two request modes:

1. Function works in the so-called „Blocked Mode“, if a NULL-Pointer is given as Pointer for the
callback-function (parameter 3) It does not return before a successful connection could be
established to the CAN-Ethernet-Gateway V2 or if an error, e.g. a timeout, has occurred.

2. Function works in the so-called „Nonblocked Mode“, if a valid address has been given to a
callback-function. Thereby, the function initiates all necessary data structures and serves for a
link connection, without waiting for a successful completion. The state of connection occurs
via the callback-function that has to be set up within the application list. It delivers the current
connection state and is called from the DLL, if the state of connection has changed. It can
therefore be responded appropriately to possible connection losses within the application.

Parameter:

pEthCanHandle_p: Address of the Instance-Handle of the CAN-Ethernet-Gateways V2

This variable is a pointer of type tEthCanHandle. In case of a successful initializing, this address
contains a valid hardware-handle, which serves as an instance-handle. This instance-handle has to be
saved and when calling any further functions, to be indicated
to this instance as parameter value.

pEthCanHwParam_p: Address to the structure of the hardware parameter

This variable is an address to a hardware-parameter structure of type tEthCanHwParam. It is
constructed as follows:

typedef struct
{
 DWORD m_dwIpAddress; //IP-address
 WORD m_wPort; //Port-Number
 tUsedProtocol m_UsedProtocol; //Protokoll (UDP oder TCP)
 DWORD m_dwReconnectTimeout; //Timeout für “Reconnect”
 DWORD m_dwConnectTimeout; //Timeout für “Connect”
 DWORD m_dwDisconnectTimeout; //Timeout für “Disconnect”

} tEthCanHwParam;

Figure 9: Construction of the Hardware-Parameter Structure

This structure has to be completed accordingly before transferring to the function. The IP-address and
the Port-Number correspond to the remote-address (IP-address of the CAN-Ethernet-Gateways V2), to
which a connection shall be established. They are to indicate in the following format:

#define IP_ADDR_DEFAULT ((192 << 0)+(168 << 8)+ (10 << 16)+(111 << 24))

#define IP_PORT_DEFAULT (8234)

There is UDP and TCP available for the transfer protocol to be used:

typedef enum
{
 kUseTCP = 0x00, // TCP Protocol
 kUseUDP = 0x01 // UDP Protocol
}tUsedProtocol;

Figure 10: Transfer Protocols of the CAN-Ethernet-Gateway V2

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

The Member-Variable m_dwReconTime after a connection loss specifies the time to wait until an
automatic connection shall be started. If this time is 0, no further connection will be established.
Member-Variable m_dwConnectTimeout is only significant if the Init-function in the „Blocked Mode“
is called. It specifies the time period after which the Init-function returns, if no successful connection
could be established. If this time period is 0, a default-timeout of 5 seconds is set up. The same
applies for the member-variable m_dwDisconnectTimeout, which defines the timeout for the Deinit-
Function, after which an existing connection shall be disconnected at the latest.

fpEthCanCbConnectFct_p:

Address to select the callback-function for connection states of the CAN-Ethernet-Gateways V2.

This value can be 0 during transfer to the Init-function, which means that no callback-function is
provided.
If a callback-function shall respond to the change of connection status, it is to define as follows:

void PUBLIC EthCanConnectControlFct(

tEthCanHandle EthCanHandle_p,
DWORD dwConnectionState_p,
LPARAM pArg_p);

Thereby, the same callback-function can be defined during initializing of different instances. An
evaluation, for which instance the connection state has changed, occurs through the instance-handle
(EthCanHandle_p) that was passed to the callback-function. However, there is the opportunity to
define a separate callback-function for each initialised instance.

Note:
If there is a callback-function defined for each instance, please make sure to assign different function
names to avoid compiler- and link errors.

Parameter dwConnectionState_p specifies the current connection state and can take the following
values, which are defined, via type tConnectionState:

typedef enum
{
 kConnecting = 0, // Connecting
 kEstablished = 1, // Connection established
 kClosing = 2, // Connection is being closed
 kClosed = 3, // Connection closed
}tConnectionState;

Figure 11: Connection State of the CAN-Ethernet-Gateway V2

pArg_p: Address to argument for the callback-function

At this point, an argument can be passed that is returned out of the DLL while calling the callback-
function. For example, transfer of the address is possible to an instance of the CAN-Ethernet-
Gateways V2, if several gateways, which are administered within a table of instances, are to address
from one single application. If only one callback-function has been selected for several instances, it
can be decided with the help of the argument pointer and its access to the elements of the table of
instances, for which instance the callback-function has been called. Given that the parameter value
pArg_p is of type LAPARAM, parameters of each type can be defined at this point. This depends on
the application in the first instance.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Return values: (see section 8.3.3)

ETHCAN_SUCCESSFULL
ETHCAN_ERR_RESOURCE
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_HWINUSE
ETHCAN_ERR_HWCONNECT_FAILD
ETHCAN_ERR_MAXMODULES
ETHCAN_ERR_SAL
ETHCAN_ERR_IFBTP

Sample:

#define IP_ADDR_DEFAULT ((192 << 0)+(168 << 8)+ (10 << 16)+(111 << 24))

#define IP_PORT_DEFAULT (8234)

DWORD dwRetcode;

tEthCanHandle EthCanHandle;

tEthCanHwParam EthCanHwParam;

EthCanHwParam.m_dwReconnectTimeout = 120000;//120s

EthCanHwParam.m_dwIpAddress = IP_ADDR_DEFAULT;

EthCanHwParam.m_wPort = IP_PORT_DEFAULT;

EthCanHwParam.m_dwConnectTimeout = 5000;//5s

EthCanHwParam.m_dwDisConnectTimeout = 5000;//5s

without callback-function:

// Initializing CAN-Ethernet-Gateway V2 without callback-function

dwRetcode = EthCanInitHardware (&EthCanHandle,&EthCanHwParam,NULL,NULL);

with callback-function:

void PUBLIC EthCanConnectControlFct (tEthCanHandle EthCanHandle_p,

 DWORD dwConnectionState_p,

 LPARAM pArg_p)

{

 switch(dwConnectionState_p)

{

 //Connecting

 case kConnecting:………………………

 break;

 //Connection established

case kEstablished:……………………

 break;

 //Connection is being closed

case kClosing:………………………………

 break;

 //Connection closed

case kClosed:…………………………………

 break;

}

}

//Initializing CAN-Ethernet-Gateway V2 with callback-function

dwRetcode = EthCanInitHardware (&EthCanHandle, &EthCanHwParam,

 EthCanConnectControlFct,NULL);

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8.3.2.3 EthCanDeinitHardware

Syntax:

DWORD STDCALL EthCanDeinitHardware (

tEthCanHandle EthCanHandle_p);

Application:
HW_INIT

Definition:

This function is the complement to the initialisation function EthCanInitHardware(). The function
works in the „Blocked Mode“ as well as in the „Nonblocked Mode“.
The request mode is defined through the request mode of the initialisation function; therefore an
equivalent is always existent. It is the functions role to close a connection and to cause a deinitialization
of data structures of the instance. The transfer parameter EthCanHandle_p describes the instance to
be disconnected.

1. In the „Blocked Mode“, disconnection is started and its close is awaited. The function does
not return until the connection has been closed or in case of an error or timeout.

2. In the „Nonblocked Mode“ only disconnection is started but a close is not awaited. The
function returns immediately. If connection state changes, the callback-function is called
from the DLL that delivers the current connection state.

Parameter:

EthCanHandle_p: Instance-handle of the CAN-Ethernet-Gateways V2

Return values: (see section 8.3.3)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_HWNOINIT
ETHCAN_ERR_HWDISCONNECT_FAILD
ETHCAN_ERR_SAL
ETHCAN_ERR_IFBTP
ETHCAN_ERR_RESOURCE

Note:

Function EthCanDeinitHardware() is to call as often as an error-free call of function
EthCanInitHardware() has occurred. If the functions were called in the “Nonblocked Mode“, it is to
ensure that the disconnection was signalled via the callback-function before terminating the
application. Not till then the Process-Thread in the DLL is closed.

Sample:

Both samples show the use of the function in blocked and nonblocked mode.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Blocked mode

#define IP_ADDR ((192 << 0)+(168 << 8)+ (10 << 16)+(111 << 24))

#define IP_PORT (8234)

void main (void)

{

 DWORD dwRetcode;

 tEthCanHandle EthCanHandle;

 tEthCanHwParam EthCanHwParam;

 EthCanHwParam.m_IpAdress = IP_ADDR;

 EthCanHwParam.m_wPort = IP_PORT;

 EthCanHwParam.m_UsedProtocol = kUseTCP;

 dwRetcode = EthCanInitHardware(&EthCanHandle,&EthCanHwParam,NULL,NULL);

 if (dwRetcode == ETHCAN_SUCCESSFUL)

 {

printf("\n*** Successfully initialised! ***\n");

 }

 else

 {

 goto Exit;

 }

 .

 dwRetcode = EthCanDeinitHardware(EthCanHandle);

 if (dwRetcode == ETHCAN_SUCCESSFUL)

 {

printf("\n*** Successfully closed! ***\n",

 }

Exit:

 return (dwRetcode);

}

Nonblocked Mode

//Callback-function for connection state

void PUBLIC EthCanConnectControlFct (tEthCanHandle EthCanHandle_p,

 DWORD dwConnectionState_p,

 void* pArg_p)

{

 switch(dwConnectionState_p)

{

 case kEstablished:……………………

 EthCanInst_g[EthCanHandle_p].fConnected = TRUE;

break;

case kConnecting:………………………

 case kClosing:………………………………

case kClosed:…………………………………

 EthCanInst_g[EthCanHandle_p].m_fConnected = FALSE;

 break;

}

}

void main (void)

{

 DWORD dwRetcode;

..tEthCanHandle EthCanHandle;

 //Initializing a CAN-Ethernet-Gateway V2 with callback-function

 dwRetcode = EthCanInitHardware (&EthCanHandle, &EthCanHwParam,

 EthCanConnectControlFct,NULL);

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

 if(dwRetcode == ETHCAN_SUCCESSFUL)

 {

 printf ("\n*** Successfully initialised! ***\n",

 }

.

.

.

.

 dwRetcode = EthCanDeinitHardware(EthCanHandle);

 if (dwRetcode == ETHCAN_SUCCESSFUL)

 {

 printf ("\n*** Successfully closed! ***\n");

 }

 //Waiting for disconnection, signalized trough callback-function

 do

 {

 Sleep(10);

 }while (EthCanInst_g[EthCanHandle].m_fConnected);

 //End application

 return(dwRetcode);

}

8.3.2.4 EthCanReadCanMsg

Syntax:

BYTE STDCALL EthCanReadCanMsg(

tEthCanHandle EthCanHandle_p,
tCANMsg* pRcvCanMsg_p
tCANTimestamp* pRcvTime_p);

Application:
HW_INIT

Definition:

This function reads a CAN-Message from the receive buffer of the DLL. The CAN-Message is thereby
deleted from the receive buffer. If there is no message in the receive buffer, the function delivers return
value ETHCAN_CANERR_QRCVEMPTY.

Parameter:

EthCanHandle_p: Instance-Handle of the CAN-Ethernet-Gateways V2

pRcvCanMsg_p: Address to a CAN-Message structure
 This address is not allowed to be NULL!

The CAN-Message is structured as follows:

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

typedef struct
{

 DWORD m_dwID; // CAN-Identifier
 BYTE m_bMsgType; // CAN-Frame-Format
 BYTE m_bLen;; // CAN-Data length
 BYTE m_bData[8]; // CAN-Data (8 Byte max.)

}tCANMsg;

Figure 12: Structure of a CAN-Message

For a CAN-Message, different format types can be distinguished. Therefore CAN-Messages with 11-
Bit Identifier (Standard-CAN-Frame and CAN-Messages with 29-Bit Identifier (Extended CAN-Frame)
are supported. This applies for so-called Remote-Frames (RTR-Frames) in the Standard- or
Extended-CAN-Frame format. The format of the CAN-Message relates to a Bit-combination that is
defined as follows:

//Standard CAN-Frame

#define ETHCAN_MSGTYPE_STANDARD 0x00

//Remote Frame (11 Bit und 29 Bit CAN-ID)

#define ETHCAN_MSGTYPE_RTR 0x01

//Extended CAN Frame 2.0 B Frame (29 Bit CAN-ID)

#define ETHCAN_MSGTYPE_EXTENDED 0x02

For a CAN-Message as RTR-Frame in the Extended-Format, values are to combine accordingly and to
enter as message format into the CAN-Message structure.

pRcvTime_p: Address to a TimeStamp-Structure of a CAN-Message
 This address is not allowed to be NULL!

The TimeStamp-Structure is defined as follows:

typedef struct
{

 DWORD m_dwMilliSec; //Milliseconds
 WORD m_wMilliSec_Overflow; //Milliseconds-overflow
 WORD m_wMicroSec; //Microseconds

}tCANTimestamp;

Figure 13: Structure of the CAN-TimeStamp

Member-Variable m_dwMilliSec contains the number of milliseconds that have passed since the
hardware system start of the CAN-Ethernet-Gateways V2. The distance between two CAN-Messages
is the difference of both millisecond values.

Note:

The member variables m_wMilliSec_Overflow and m_wMicroSec of the Timestamp-Structure are
not applied at current and therefore ever contain value 0.

Return value: (see section 8.3.3 and 8.3.4)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_ILLHANDLE

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

ETHCAN_ERR_HWNOINIT
ETHCAN_ERR_HWNOTCONNECTED
ETHCAN_CANERR_QRCVEMPTY
ETHCAN_CANERR_QOVERRUN

Sample:

tEthCanHandle EthCanHandle;

tCANMsg RecvCanMsg;

tCANTimestamp RecvTime;

DWORD dwRetcode;

//read CAN-Message

dwRetcode = EthCanReadCanMsg(EthCanHandle,&RecvCanMsg,&RecvTime);

if(dwRetcode == ETHCAN_SUCCESSFUL)

{

 //CAN-Message received

}

else

if(dwRetcode & ETHCAN_CANERR_ QRCVEMPTY)
{

 //no CAN-Message in the message buffer

}

else

{

 //Error while receiving the CAN-Message

}

8.3.2.5 EthCanWriteCanMsg

Syntax:

DWORD STDCALL EthCanWriteCanMsg(
tEthCanHandle EthCanHandle_p,
tCANMsg* pSendCanMsg_p,
tCANTimestamp* pSendTime_p);

Application:
HW_INIT

Definition:

This function writes a CAN-Message in the send buffer that is established within EthCan.Dll . If the
CAN-Message could not be stored in the send buffer (e.g. buffer overflow), function returns with error
code ETHCAN_CANERR_QXMTFULL which means that a buffer overflow has occurred.

Parameter:

EthCanHandle_p: Instance-Handle of the CAN-Ethernet-Gateways V2

pSendCanMsg_p: Address to a CAN-Message Structure
 This address is not allowed to be NULL!

pSendTime_p: Address to a TimeStamp-Structure
 This address is not allowed to be NULL!

Parameter value pSendCanMsg_p relates to an address to the structure of a CAN-Message, as
already defined for function EthCanReadCanMsg() (see section 8.3.2.4). Depending on which CAN-

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Message (29-Bit,11-Bit, RTR) is to be sent, the message format has to be defined accordingly.(see
section 8.3.2.4).

Parameter value pSendTime_p is an address to a TimeStamp-Structure. This parameter is currently
not significant for the function; however, the address assigned is not allowed to be NULL. The structure
elements are to initialise with 0.

Return values: (see section 8.3.3 and 8.3.4)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_HWNOINIT
ETHCAN_ERR_HWNOTCONNECTED
ETHCAN_CANERR_QXMTFULL

Sample:

tEthCanHandle EthCanHandle;

tCANMsg CanMsg;

tCANTimestamp SendTime;

DWORD dwRetcode;

//Initialisation of Standard-RTR-Frames

CanMsg.m_dwId = 0x180; //CAN-ID

CanMsg.m_bMsgType = ETHCAN_MSGTYPE_STANDARD & ETHCAN_MSGTYPE_RTR;

CanMsg.m_bLen = 8;//8 Byte requested data length

SendTime.m_dwMillis = 0;

//sending of CAN-Message

dwRetcode = EthCanWriteCanMsg(EthCanHandle,&CanMsg,&SendTime);

if(dwRetcode == ETHCAN_SUCCESSFUL)

{

 //CAN-Message successfully sent!

}

else

if(dwRetcode & ETHCAN_CANERR_ QXMTFULL)
{

 //Send buffer overflow

}

else

{

 //Error during sending CAN-Message

}

8.3.2.6 EthCanGetStatus

Syntax:

DWORD STDCALL EthCanGetStatus(

tEthCanHandle EthCanHandle_p,
tStatus* pStatus_p);

Application:
HW_INIT

Definition:

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

The function returns the error status of the CAN-driver as well as the Ethernet connection state of the
CAN-Ethernet-Gateways. If a CAN-error occurs on the CAN-Ethernet-Gateway V2 (e.g. send- or
receive buffer overflow), this status is transferred via Ethernet and can be requested through this
function. In addition to the CAN-status, the current connection state of the Ethernet between PC and
the CAN-Ethernet-Gateway V2 is returned.
This function has to be called from time to time to be able to respond to possible CAN-errors.

Parameter:

EthCanHandle_p: Instance-Handle of the CAN-Ethernet-Gateways V2

pStatus_p: Address to a Status-Structure
 This address is not allowed to be NULL!

This status structure is defined as follows:

typedef struct
{

 WORD m_wCanStatus; // Current CAN-Status
 WORD m_wConnectionStatus; // Current Connection Status

} tStatus;

Figure 14: Structure of the CAN-Status-Structure

Return values: (see section 8.3.3)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_HWNOINIT
ETHCAN_ERR_HWNOTCONNECTED

Sample:

tEthCanHandle EthCanHandle;

tStatus Status;

DWORD dwRetcode;

//Reading CAN-Message

dwRetcode = EthCanGetStatus(EthCanHandle,&Status);

if(dwRetcode == ETHCAN_SUCCESSFUL)

{

 if(Status.m_wCanState & ETHCAN_CANERR_OVERRUN)

 {

 //Overrun occured

}

}

else

{

 //Error while reading CAN-Status

}

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8.3.2.7 EthCanGetConnectionState

Syntax:

DWORD PUBLIC EthCanGetConnectionState(

tEthCanHandle EthCanHandle_p,
tConnectionState* pState_p);

Application:
HW_INIT

Parameter:

EthCanHandle_p: Instance-Handle of the CAN-Ethernet-Gateways V2

pState_p: Address to connection state-variable
 This address is not allowed to be NULL!

Definition:

This function delivers the current connection state of the CAN-Ethernet-Gateway V2. If no callback-
function was defined during initialisation of the gateways, which is called during change of connection
state, the connection state can be requested with the help of this function in the polling mode. Applying
this function is recommended if initialisation and deinitialization routines were called in the “Blocked
Mode“.
Parameter pState_p delivers the current connection state after calling the function and can adopt the
values previously explained in figure 11.

Return values: (see section 8.3.3)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_HWNOINIT

Sample:

tEthCanHandle EthCanHandle;

tConnectionState ConnectionState;

DWORD dwRetcode;

//Read connection state

dwRetcode = EthCanGetStatus(EthCanHandle,&ConnectionState);

if(dwRetcode == ETHCAN_SUCCESSFUL)

{

 if(ConnectionState == kConnecting)

 {

 //Executing code

}

if(ConnectionState == kEstablished)

{

 //Executing code

}

 .

 .

 .

}

else

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

{

 //Error while reading connection state

}

8.3.2.8 EthCanResetCan

Syntax:

DWORD PUBLIC EthCanResetCan(

tEthCanHandle,
dwResetCode_p)

Application:
HW_INIT

Parameter:

EthCanHandle_p: Instance-Handle of the CAN-Ethernet-Gateways V2

dwResetCode_p: Reset-Code for CAN

Definition:

This function serves for reset of the CAN-communication of the CAN-Ethernet-Gateways V2 and the
DLL in case of a CAN-Error due to buffer overflows or faults of the CAN-Bus. It is defined via
Parameter dwResetCode_p, if only the send- and receive buffers in the DLL or as well the send- and
receive buffers of the CAN-Ethernet-Gateways and its CAN-Interface (CAN-Controller) are to reset.
The following parameter values can be given for the Reset-Code:

//Deletion of the send buffer for CAN-Messages in the DLL

#define RESET_TRANSMIT_QUEUE 0x00

//Deletion of receive buffer for CAN-Messages in the DLL

#define RESET_RECEIVE_QUEUE 0x01

//Deletion of the send- and receive buffer for CAN-Messages in the DLL.

#define RESET_ALL_QUEUES 0x02

// Deletion of the send- and receive buffer for CAN-Messages on the Gateway and reset of the CAN-
Controller

#define RESET_CAN_CONTROLLER 0x04

These constants can be combined bit by bit so that a reset of defined or all CAN-components is
possible as desired.

Note:
During a reset of the CAN-Interface or deletion of the buffers, no CAN-Messages can be sent or
received!

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Return values: (see section 8.3.3)

ETHCAN_SUCCESSFUL
ETHCAN_ERR_ILLHANDLE
ETHCAN_ERR_ILLPARAM
ETHCAN_ERR_HWNOINIT
ETHCAN_ERR_HWNOTCONNECTED

Sample:

tEthCanHandle EthCanHandle;

DWORD dwResetCode;

DWORD dwRetcode;

//Reset of all buffers and reset of the CAN-Interface

//of the CAN-Ethernet-Gateways V2

dwResetCode = (RESET_ALL_QUEUES & RESET_CAN_CONTROLLER);

//Reset of CAN-Interface

dwRetcode = EthCanResetCan(EthCanHandle,dwResetCode);

if(dwRetcode == ETHCAN_SUCCESSFUL)

{

//CAN-Interface successfully reset!

}

else

{

 //Error while resetting the CAN-Interface

}

8.3.3 Description of Error Codes

The functions of the EthCan.Dll return an error code in form of a DWORD. Each return value relates to
an error. The following table shows all error codes and their numerical values.

Error Code Numerical Value

ETHCAN_SUCCESSFUL 0x0

ETHCAN_ERR_ILLPARAM 0x1

ETHCAN_ERR_ILLPARAMVAL 0x2

ETHCAN_ERR_ILLHANDLE 0x3

ETHCAN_ERR_HWNOINIT 0x4

ETHCAN_ERR_HWINUSE 0x5

ETHCAN_ERR_HWNOTCONNECTED 0x6

ETHCAN_ERR_HWCONNECT_FAILED 0x7

ETHCAN_ERR_HWDISCONNECT_FAILED 0x8

ETHCAN_ERR_MAXMODULES 0x9

ETHCAN_ERR_SAL 0xA

ETHCAN_ERR_IFBTP 0xB

ETHCAN_ERR_RESOURCE 0xC

Table 17: Error Codes Interface Functions EthCan.Dll

ETHCAN_SUCCESSFUL

Function executed successfully.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

ETHCAN_ERR_ILLPARAM

Illegal parameter was transferred to the called function. Most common is the transfer of a Null-pointer
in this case.

ETHCAN_ERR_ILLPARAMVAL

Invalid parameter value was transferred to the called function.

ETHCAN_ERR_ILLHANDLE

An invalid instance-handle was transferred to the called function. One reason is the transfer of an
instance-handle with an invalid instance number, e.g. 0. A further reason is that the driver is supporting
not more than 5 instances of the CAN-Ethernet-Gateways V2, which means that a transfer of an
instance-handle higher than 5 leads to the same error.

ETHCAN_ERR_HWNOINIT

This function was called with an instance-handle for which the relating initialization function of the
hardware has not been called yet. Therefore, function EthCanInitHardware() is to call which returns a
valid instance-handle after a successful connection.

ETHCAN_ERR_HWINUSE

Function EthCanInitHardware() was called with an instance-handle for which the initialization routine
has been called successfully. To process a further initialization with probably changed parameter
values, reinitialization function EthCanDeinitHardware() is to call in either case before reinitialization
can take place.

ETHCAN_ERR_HWNOTCONNECTED

The function has been called for which there was no connection of the CAN-Ethernet-Gateways V2
when the call occurred. One reason could be a connection loss due to a loss of the physical network
connection (Ethernet cable was disconnected).
If a callback-function has been specified during initialization, a reaction to the connection loss is
immediately possible. The send- and receive functions for CAN-Messages shall not be called until
connection state is in the kEstablished state.
If a callback-function has been defined, the connection state can be polled via function
EthCanGetConnectionState() and after a successful „Reconnect“, a call of the function can be
repeated.

ETHCAN_ERR_HWCONNECT_FAILED

This error code is only returned by function EthCanInitHardware() , if it is called in the blocked mode ,
i.e. without specifying a callback-function. The reason is that no connection to the given remote-
address could be established within a timeout that was passed to the parameter-structure during

initialization. The Default-Timeout in the Header-File EthCan32.h is set to 5s. If a specific timeout-
value was passed during initialization it has to be checked whether the timeout is sufficient for a
successful link connection (depending on distance and network topology).
The given parameters, e.g. IP-Address and Port-Number are to be checked for correctness and
whether the remote-address is accessible through the Ethernet-connection.

ETHCAN_ERR_HWDISCONNECT_FAILED

This error code is only returned from function EthCanDeinitHardware if it is called in the blocked
mode . The reason is that within the timeout, which has been passed to the parameter-structure during
initialization, the connection to the given route-address could not be closed. The Default-Timeout in the

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Header-File EthCan32.h is set to 5s. If a specific timeout-value was passed during initialization it has
to be checked whether the timeout is sufficient for a successful link connection (depending on distance
and network topology).

ETHCAN_ERR_MAXMODULES

The maximum number of CAN-Ethernet-Gateways V2 supported by DLL has been reached.
Initialization of a further instance is impossible. Please reinitialize possible instances that are no longer
needed and then recall the Init-Function.

ETHCAN_ERR_SAL

An error has occurred during initialization or reinitialization of the SAL (Stack-Abstraction-Layer) for
TCP or UDP. Reasons for this error might be:

 Installation or closing of the Windows-Socket-Interface could not be executed due to missing
resources or a non-supported version of the Windows-Socket.

 A call of WIN32-Functions used for the Windows-Socket, e.g. Connect(), Bind(), Accept(),
Send() and Recv() returned an error due to invalid parameters.

ETHCAN_ERR_IFBTP

An error occurred during initialization or reinitialization of the BTP-Interfaces (Block Transfer Protocol)
for UDP or TCP.

ETHCAN_ERR_RESOURCE

A resource could not be generated. The term “resources” includes storage standards, handles or
threads that are assigned by Windows.

8.3.4 Description of CAN-Error Codes

The CAN-error code that is returned through the functions EthCanReadCanMsg(),
EthCanWriteCanMsg() and EthCanGetStatus(), relates to a bit combination from error codes shown
in table 12. Thereby, several error states can be indicated.

CAN-Error-Code Numerical Value

ETHCAN_CANERR_OK 0x0000

ETHCAN_CANERR_XMTFULL 0x0001

ETHCAN_CANERR_OVERRUN 0x0002

ETHCAN_CANERR_BUSLIGHT 0x0004

ETHCAN_CANERR_BUSHEAVY 0x0008

ETHCAN_CANERR_BUSOFF 0x0010

ETHCAN_CANERR_QRCVEMPTY 0x0020

ETHCAN_CANERR_QOVERRUN 0x0040

ETHCAN_CANERR_QXMTFULL 0x0080

ETHCAN_CANERR_REGTEST 0x0100

ETHCAN_CANERR_MEMTEST 0x0200

Table 18: CAN-Error Codes

ETHCAN_CANERR_OK

No CAN-Error occurred.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

ETHCAN_CANERR_XMTFULL

The send buffer in the CAN-Controller of the CAN-Ethernet-Gateways V2 has reached the maximum
number of CAN-messages.

ETHCAN_CANERR_OVERRUN

The receive buffer in the CAN-Controller of the CAN-Ethernet-Gateways V2 has reached the maximum
number of CAN-Messages.

ETHCAN_CANERR_BUSLIGHT

The error counter in the CAN-Controller has reached Warning-Limit 1. Please refer to the CAN-
Controller SJA 1000 Manual for further information.

ETHCAN_CANERR_BUSHEAVY

The error counter in the CAN-Controller has reached Warning-Limit 2. Please refer to the CAN-
Controller SJA 1000 Manual for further information.

ETHCAN_CANERR_BUSOFF

The CAN-Controller changed to state BUS_OFF due to the error counters to avoid a further
interference of the CAN-Bus.

ETHCAN_CANERR_QRCVEMPTY

The receive queue for CAN-Messages within the DLL does not contain CAN-Messages, i.e. all CAN-
Messages were read-out or no further CAN-Messages have been received.

ETHCAN_CANERR_QOVERRUN

There is an overflow in the receive queue for CAN-messages. Thereby, CAN-Messages could be lost.

ETHCAN_CANERR_QXMTFULL

There is an overflow of the send queue for CAN-messages in the DLL. Thereby, CAN-Messages could
be lost.

ETHCAN_CANERR_REGTEST

The register test for the SJA1000 has failed. Please refer to the Manual for the CAN-Controller SJA
1000 for further information.

ETHCAN_CANERR_MEMTEST

The storage test of the SJA1000 has failed. Please refer to the Manual for the CAN-Controller SJA
1000 for further information.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

8.3.5 Application of DLL-Functions

8.3.5.1 Demo-Project

As described in chapter 8.2, a Demo-Project is designed in the installation path. This project contains a

“C”-source-code file Demo.c as well as the related header-file Demo.h and shows the application of
the DLL-interface function.
Thereby, the EthCan.Dll is loaded dynamically to the running time through function LoadLibrary() and
the functions pointers are determined through function GetProcAddress().

The Demo-Program is based on a WIN32-console application and is restricted to the support of an
instance of the CAN-Ethernet-Gateways V2. After starting the program and loading of the EthCan.Dll a
connection is established to CAN-Ethernet-Gateway V2 addressed via the IP-address and port-
number. If the connection could be established successfully, a CAN-Message is sent periodically with
CAN-ID 0x180.

For checking the reception of a CAN-Message via Ethernet and the following sending of the CAN-

Message on the CAN-Bus of the Gateway, an analyzing tool (e.g. PCAN Explorer by Peak) that is
connected to the CAN-Bus of the CAN-Ethernet-Gateways V2 shall be used.

Sending of CAN-Messages on the CAN-Bus of the CAN-Ethernet-Gateways V2 can occur as well by
an analyzing tool or a further CAN-Hardware connected to it. Receiving of a CAN-Message on the PC
by the CAN-Ethernet-Gateway V2 is confirmed in the console window of the Demo-application through
the CAN-ID, the CAN-Message length as well as the data contained.

Software Support

L-1294e_10 © SYS TEC electronic GmbH 2014

Figure 15: Desktop-Link for Demo-Program

Starting Demo-Program
The Demo-Program needs different prompt parameters for calling, e.g. IP-address and the port
number of the gateway as well as the transfer protocol used (TCP or UDP). For starting the Demo-
Program, two different options are available:

1. Please open a command-shell and change to the directory of the executing file
EthCanDemo.exe that has been specified during installation. For starting the Demo-Program
please specify at the input prompt the name of the program to be executed as well as IP-
address, port number and the transfer protocol required.

Two samples for a call are demonstrated:

Sample 1:

 ...\Release\EthCanDemo.exe 192.168.010.111 8234 TCP

Sample 2:

 ...\Release\EthCanDemo.exe 192.168.010.111 8234 UDP

The single parameters are separated through spaces. Through confirmation via the enter
key, the demo application is started.

2. The second opportunity exists in creating a link on the desktop as shown in Figure 15. Please

go to the desktop and create a new link. Afterwards please direct the target range to the
directory, where the executing program is stored.

Following the target directory, the IP-address, port number and the transfer protocol are to specify,
separated through spaces.

ASCII-Protocol

L-1294e_10 © SYS TEC electronic GmbH 2014

9 ASCII-Protocol

In order to provide more flexibility in the corresponding counterpart to the CAN-Ethernet-Gateway V2,
the ASCII protocol support has been added. The data format was designed in a way that it allows for
manual interpretation of the transmitted data.

9.1 Establishing Connection

The ASCII protocol is based on the TCP protocol and uses port 12000 by default. This pre-assigned
port can be changed using appropriate configuration. When multiple ASCII instances are being used, a
different TCP port must be used for each instance. As soon as a TCP connection has been
established ASCII messages can be transmitted over the CAN-Ethernet-Gateway V2. The CAN-
Ethernet-Gateway V2 will also start transmitting messages if new data are available through its
interface.

9.2 Transmission Format

All ASCII messages start with character $ and are terminated by using the # character.
It is also possible to send multiple ASCII messages in a "bulk transmission" given the presence of the
start and end character. To provide easier manual data interpretation it is allowed to add a 'carraige
return' symbol (CR, \r or 0xd) and/or a'new line' symbol (NL, \n or 0xa) between the end character of
one message and the start character of the following message. However, this procedure is not
mandatory.

The CAN-Ethernet-Gateway V2 will automatically attach these symbols automatically to an ASCII
message. All elements of the ASCII message are separated by a ";" and there cannot be any spaces,
carriage returns or other non-compliant characters within each ASCII message. Messages with
syntactical errors or incorrect content will be discarded without system interruption or notification.

Principal format:

$<Typ>;<type-specific contents>;#

9.2.1 CAN-Messages

CAN messages will be transmitted as ASCII messages which have the following Format:

$CAN;<Timestamp><ID-Typ>;<Frame-Typ>;<CAN-ID>;<DLC>;<Data-

Bytes>;#

The following values are allowed for each of the available elements:

Element Valid Values

Timestamp Will only be sent, if enabled for this instance, see 6.4.7
Format: "<Time>;"
Time base is 1ms

ID-Type "S": Standard CAN-ID
"E": Extended CAN-ID

Frame-Type "D": Data Frame
"R": RTR-Frame

CAN-ID Value of the actual CAN-ID. The prefixes 0x for hexadecimal and 0 for
octal are supported. Any value without a prefix is interpreted as decimal
value. Please note that depending on the ID-Type different value ranges

ASCII-Protocol

L-1294e_10 © SYS TEC electronic GmbH 2014

are valid.

DLC The number corresponding to the Data Length Code of the CAN message.
Valid Values: 0, 1, 2, 3, 4, 5, 6, 7, 8

<Data-Bytes> is a list of numbers (separated by semicolon) that correspond to the CAN

message data bytes.

Similar to the CAN-ID the prefixes for hexadecimal (0x) and for octal (0) are supported. The data bytes
are in the order starting with data byte 0 followed by data byte 1 and so forth.
The maximum number of data bytes is 8.

It is important to note and make sure that the actual number of data bytes must correspond to the
number provided in the element "DLC". The only exception is RTR frames which do not have actual
data bytes but a DLC value greater than 0.
Note:

Beginning with firmware version 1.2.2 the gateway will generate all DLC and data bytes using the
format 0x00. Also the CAN-ID will be in format 0x7ff resp. 0x1fffffff. This allows an easier parsing
as the length of the elements is fixed.
A demo implementation of an ASCII parser can be found at http://www.systec-electronic.com/can-
ethernet in the tab "Downloads". Use the download "CAN-Ethernet Gateway V2 - ASCII parser
example"

Note:
Beginning with firmware version 1.2.4 the gateway is able to send and receive timestamps. This
feature is optional and disabled by default to be compatible with current implementations.
Regardless of the configuration reception of ASCII frames including the timestamp is always
possible.

http://www.systec-electronic.com/can-ethernet
http://www.systec-electronic.com/can-ethernet

Firmware Update

L-1294e_10 © SYS TEC electronic GmbH 2014

10 Firmware Update

To make a Firmware-update, the new firmware has to be loaded onto the gateway via FTP. An update
is started via Telnet or the USB-Interface. Thereby, the new software is written into the non-volatile
program memory (flash). This process needs an existing Ethernet-connection between the gateway
and the PC. On the PC, a FTP-client and a terminal program are needed.

10.1 Preparation

The following steps are necessary for arranging the firmware update:

1. Please connect the voltage supply to the CAN-Ethernet-Gateway V2.

2. After booting has finished, establish a connection to the gateway via FTP.

3. Please establish a connection to the console via the terminal program or a Telnet-client; log in
as root.

10.2 Firmware Download

Please copy the new firmware to /tmp onto the gateway via FTP. Afterwards, a FTP-connection is no
longer needed and can be disconnected. Now start the update program gatewayupdate. Therefore,

the new firmware is to specify as argument, e.g. gatewayupdate /tmp/V1.01_update.tar.gz.

After the Firmware-Update is completed, the gateway has to be restarted through command reboot.

Firmware Update

L-1294e_10 © SYS TEC electronic GmbH 2014

Index

L-1294e_10 © SYS TEC electronic GmbH 2014

Index

1

10Base-T ... 5, 7
11-Bit CAN-Identifier 1, 5

2

29-Bit CAN-Identifier 1, 5

A

Application area 1
Application of DLL-Functions 47
ASCII-Protocol 49

B

Blocked Mode 44
BTP ... 1

C

CAN_GND ... 7
CAN_H .. 7
CAN_L ... 7
CAN-Bitrate ... 1
CAN-Bus-Connection 5, 7
CAN-Error Codes 45
CAN-Interface.. 5
CAN-Message Format 37, 39
CANopen ... 1
Carrier Rail Construction 5
cat .. 17
CAT 3 .. 7
CAT 5 .. 7
cd ... 17
Command Shell 48
Crosslink-Cable 7
Current Consumption 5

D

Description of Error Codes 43
DeviceNet .. 1
Direct Voltage .. 7

Driver Installation 28
Dynamic Link Library 29

E

Error Message 1
EthCan.Dll 28, 29, 38
EthCan.Lib ... 29

EthCanDeinitHardware 34, 44

EthCanGetConnectionState 41, 44

EthCanGetStatus 39

EthCanGetVersion............................. 30

EthCanInitHardware 30, 44

EthCanReadCanMsg 36

EthCanResetCan 42

EthCanWriteCanMsg 38
Ethernet-Connection 7
exit .. 18
Extended CAN-Frame 37

F

Filter .. 16
Filtering ... 16

Firmware Download.......................... 51
Firmware Update 51
FTP ... 5
Function Interface EthCan.Dll 30

I

Interface .. 14
Interface, CAN 15, 27
Interface, TCP-Client 15
Interface, TCP-Server 15
Interface, UDP-Client 15
Interface, UDP-Server 15
IP-Address .. 13

J

J1939 .. 1

L

LED ... 5
LIB ... 28
ls 17

O

Operating Temperature Range 5

P

Plug Connector 5
Power .. 7, 8
Power Supply .. 5

Provisions ... 51

R

Register Structure 28
Remote-Frame.................................... 37
reset .. 18
RJ45-Plug ... 7
rm .. 17
RS232 ... 1, 5

Index

L-1294e_10 © SYS TEC electronic GmbH 2014

S

SDS ... 1
Size.. 5

Software Support 28
Standard CAN-Frame 37

Starting the Demo-Program 48
Supply Voltage 7

T

TCP ... 9, 15
TCP/IP ... 1, 15
Technical Data 5

Telnet .. 5, 12, 13

The Concept of EthCan.Dll 29

U

UART .. 1
UDP .. 9, 15
UDP/IP .. 1, 15
USB-Device .. 8
USB-Device-Interface 10

V

version .. 18

Suggestions for Improvement

Document: CAN-Ethernet-Gateway V2

Document number: L-1294e_10, Edition December 2014

How would you improve the document?

Did you find any mistakes in this manual? page

Submitted by:

Costumer number:

Name:

Company:

Address:

Please fax or mail to: +49 3765 / 38600-4100

SYS TEC electronic GmbH

Am Windrad
D-08468 Heinsdorfergrund
GERMANY

Published by
© SYS TEC electronic GmbH Best.-Nr. L-1294e_10

Printed in Germany

	1 Introduction
	1.1 Basics
	1.2 Application Areas
	1.2.1 Connection of two CAN-networks via Ethernet
	1.2.2 Remote Diagnosis and Configuration of CAN-Networks

	2 Scope of Delivery
	3 Technical Data
	4 Implementation
	4.1 Power Supply
	4.2 Network Connection
	4.2.1 CAN-Bus Connection
	4.2.2 Ethernet-Connection
	4.2.3 USB-Device Interface

	4.3 Status Display
	4.4 Buttons
	4.5 Implementation
	4.5.1 Standard Configuration
	4.5.2 Initial Configuration via USB-Device-Interface
	4.5.3 Configuration and Operation through Telnet

	5 Device Function
	5.1 Overview
	5.2 Interfaces
	5.2.1 Basic Concept
	5.2.2 UDP/TCP-Server Interface
	5.2.3 UDP/TCP-Client Interface
	5.2.4 CAN-Interface
	5.2.5 Data logger-Interface

	5.3 Filtering
	5.4 File System
	5.4.1 Layout

	5.5 Description of Important Commands
	5.5.1 cd
	5.5.2 ls
	5.5.3 rm
	5.5.4 cat
	5.5.5 version
	5.5.6 exit
	5.5.7 reboot
	5.5.8 gatewayconfig

	6 Gateway Configuration
	6.1 Basics
	6.2 Section [Interfaces]
	6.3 Section [Connections]
	6.4 Section [InstanceX]
	6.4.1 Instance-Type CAN
	6.4.2 Instance-Type DLOG
	6.4.3 Instance-Type BTP_UDP_CAN_SRV
	6.4.4 Instance-Type BTP_UDP_CAN_CLIENT
	6.4.5 Instance-Type BTP_TCP_CAN_SRV
	6.4.6 Instance-Type BTP_TCP_CAN_CLIENT
	6.4.7 Instance-Type ASCII_TCP_SRV

	6.5 Filtering
	6.6 Sample for a Customer-Specific Configuration-Script
	6.7 Creation of a Configuration-Script

	7 Error Processing
	7.1 Error Signals of the CAN-Ethernet-Gateway V2
	7.2 Error Messages via CAN
	7.3 Status Overview

	8 Software Support
	8.1 Connection of CAN-Ethernet-Gateways V2 to the PC
	8.2 Driver Installation on Windows
	8.3 The Dynamic Linked Library EthCan.Dll
	8.3.1 The Concept of EthCan.Dll
	8.3.2 The Function Interface of the EthCan.Dll
	8.3.2.1 EthCanGetVersion
	8.3.2.2 EthCanInitHardware
	8.3.2.3 EthCanDeinitHardware
	8.3.2.4 EthCanReadCanMsg
	8.3.2.5 EthCanWriteCanMsg
	8.3.2.6 EthCanGetStatus
	8.3.2.7 EthCanGetConnectionState
	8.3.2.8 EthCanResetCan

	8.3.3 Description of Error Codes
	8.3.4 Description of CAN-Error Codes
	8.3.5 Application of DLL-Functions
	8.3.5.1 Demo-Project

	9 ASCII-Protocol
	9.1 Establishing Connection
	9.2 Transmission Format
	9.2.1 CAN-Messages

	10 Firmware Update
	10.1 Preparation
	10.2 Firmware Download

