5YS TED

System Manual
PLCcore-9G20

User Manual
Version 1.0

Edition July 2010

Document No.: L-1254e 1

SYS TEC electronic GmbH August-Bebel-Str. 29 D-07973 Greiz
Phone: +49 (3661) 6279-0 Fax: +49 (3661) 6279-99
Web: http://www.systec-electronic.com Mail: info@systec-electronic.com

SYS TEC electronic GmbH - System House for distributed Automation

System Manual PLCcore-9G20

Status/Changes

Status: released

Date/Version Section Changes Editor
2010/07/15 All Creation R. Sieber
1.0

© SYS TEC electronic GmbH 2010

L-1254e_1

Page 1

System Manual PLCcore-9G20

This manual includes descriptions for copyrighted products that are not explicitly indicated as such.
The absence of the trademark (©) symbol does not infer that a product is not protected. Additionally,
registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable.
However, SYS TEC electronic GmbH assumes no responsibility for any inaccuracies. SYS TEC
electronic GmbH neither guarantees nor accepts any liability whatsoever for consequential damages
resulting from the use of this manual or its associated product. SYS TEC electronic GmbH reserves
the right to alter the information contained herein without prior notification and does not accept
responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH neither guarantees nor assumes any liability for damages
arising from the improper usage or improper installation of the hardware or software. SYS TEC
electronic GmbH further reserves the right to alter the layout and/or design of the hardware without
prior notification and accepts no liability for doing so.

© Copyright 2010 SYS TEC electronic GmbH. All rights — including those of translation, reprint,
broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in
whole or in part — are reserved. No reproduction may occur without the express written consent from
SYS TEC electronic GmbH.

Inform yourselves:

Contact Direct Your local distributor

Address: SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz

GERMANY
Ordering +49 (0) 36 61/ 62 79-0 Flease find a ist of our
Information: info@systec-electronic.com Istributors under:

http://www.systec-
electronic.com/distributors

Technical Support: | +49 (0) 36 61 /62 79-0
support@systec-electronic.com

Fax: +49 (0) 36 61/6 79 99

Web Site: http://www.systec-electronic.com

1st Edition July 2010

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 2

mailto:info@systec-electronic.com
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

System Manual PLCcore-9G20

Table of Contents

R | 0 4 oo ¥ X {0 o IO PP PP PEPPPPPPPPPPI 5
2 Overview /Where to find What? ... 6
3 ProdUCT DESCIIPTION ettt e e e e e e e e e e s e e e e e e e e e annneees 8
4 Development Kit PLCCOIE-9G20ccooiiiiiiiiiiie e 10
A OVEIVIEBW ..ttt b e h e et et e s e bt e e bt e e ah et e e be e e sab e e et et e sare e e anneere e 10

4.2 Electric commissioning of the Development Kit PLCcore-9G20cccoceeeeeeeiiiciiiieeeennn. 11

4.3 Control elements of the Development Kit PLCcore-9G20............coooviiieiiiiiieieiiieee e 12

4.4 OPLONAl ACCESSONYeeiiiiiiiiee ettt ettt e e e et e e s sttt e e e sttt e e e abeeeeesabeeeeesaneeeeesanteeeaan 13
441 USB-RS232 Adapter Cableooiiiiiiieeee et 13

4.4.2 Driver Development Kit (DDK)......cocueiiiiiiiiieiiiie e 13

5 Pinout Of the PLCCOIE-9G20... ..t na e e e e e e e e e e e e 14
6 PLC Functionality of the PLCCOre-9G20ouuiiiieiiiiiiiiiiieiiieeieeeiieeneeeneenneeeneeenneennee 17
8.1 OVEBIVIBW ...ttt b et a et s e e bt e ettt 17

6.2 System start of the PLCCOre-9G20coooiiiiiiiiiiieieeiee e 17

6.3 Programming the PLCCOre-9G20ooiiiiiiiieiiiiee et 18

6.4 Process image of the PLCCOre-9G20...........cuiiiiiiiiiieiiiie e 19
6.4.1 Local In- and OULPULSoeiiiiieieiee e e e e 19

6.4.2 In- and outputs of user-specific baseboards............coooiiiiiiii i 20

6.5 CommuNICatioN INTEITACESeii it e e e nree e e e e 20
6.5.1 Serial INTEITACESoiii i 20

B.5.2 CAN INTEITACES ... utiii ettt et e s s e e e e e e e enneeeesnnnaeeean 21

6.5.3 Ethernet interfaces. ... 21

6.6 Specific peripheral INTErfacesooiiiiiiiiii e e e 21
G Tt B ©7o 10 (= AT a] o] U £ RRRP 21

6.6.2 PUISE OUIPULS ..ottt e e 22

6.7 Control and display €lemMENtScoo i 22
6.7.1 RUN/SIOP SWItCN ... e 22

6.7.2 RUN-LED (GrEEN) ...eeiiiiiiiii ittt 22

6.7.3 EITOr-LED (Fed)eeeeei ittt 23

6.8 Local deletion of @ PLC PrOgram ...ttt 24

6.9 Using CANopen for CAN INEIACEScoeiiiiiiieiiiiie et e 24
6.9.1 CAN INterface CAND........oooiiiii it e et e e e sneae e e s snneeee s 25

6.9.2 Additional CAN iNfEIACES........cciiiiiie it reeea e 26

7 Configuration and Administration of the PLCcore-9G20..........cccccvieeeiiiiviiieiiiieeneenn, 27
7.1 System requirements and necessary software to0IS............ccccieiiiiiiiiiii e 27

7.2 Activation/Deactivation of Linux AUtOSTart............cceeiiiiiiiiiii e 28

7.3 Ethernet configuration of the PLCCOre-9G20coooiiiiiiiiiiie e 30

7.4 PLC configuration of the PLCCOre-9G20..........ccooiuiiiiiiiiieeiieee et 31
7.4.1 PLC configuration via WEB-Frontend..............cccooiiiiiiiiii e 31

7.4.2 PLC configuration via control elements of the Development Kit PLCcore-9G20 ... 33

7.4.3 Setup of the configuration file "plccore-9g20.cfg"........ccvvriiiiiiieiiiiiee e 33

7.5 Boot configuration of the PLCCOre-9G20cccocieiiiiiiiieiiiiee e 35

7.6 Selecting the appropriate firmware VErsioncccoocciiieiiie e 35

7.7 Predefined USEr @CCOUNTS.........cuiiiiiiiiiii ettt 37

7.8 Login t0 the PLCCOrE-9G20..........uuiiiiiiiie ettt e e e e e e e e e s re e e e e e e ennnnes 37
7.8.1 Login to the command Shell.............coooiiiiiii e 37

7.8.2 LoGINtOthe FTP SEIVEroouiiiii e 38

7.9 Adding and deleting USEer aCCOUNLScccoiiiiiiiiiiiee e 40
7.10 How to change the password for USEer aCCOUNTSc.ueiiiiiiiiiiiiiiie e 41

7.11 Setting the SyStem tiMe ... e 41

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 3

System Manual PLCcore-9G20

7.12 File system of the PLCCOrE-9G20cueeiiiiiiiiee it see et a e nree e e enees 42
7.13 Software update of the PLCCOre-9G20uviiiiiieeiiiiiieiieee et e e e 43
7.13.1 Updating the PLC firmMWare..........cccuiiiiiiie e e e e e e e e e eeannes 43

7.13.2 How to update the LinuX-IMage..........cccceeeiiiiiiiiiiiiie e 45

8 Adaption of In-/Outputs and Process Image........cccoeeeeeeiiii i, 48
8.1 Data exchange via shared proCess iMageccueiiiiiiiieiiiiiie e 48
8.1.1 Overview of the shared process iIMagecooviiiiiiiiiiii e 48

8.1.2 APl of the shared process image client ..o 51

8.1.3 Creating a user-specific client applicationccccoviiiiiiiiie e 55

8.1.4 Example for using the shared process imagecccoccevreiiiiiieeiciie e 57

8.2 Driver Development Kit (DDK) for the PLCcore-9G20cceveiiiiiieeiiiiee e 61

8.3 Testing the hardware CONNECLIONScociiiiiiii e e 63
Appendix A: Firmware function scope of PLCcore-9G20covviiiiiiiiiiiieeiiiii e eeeeeeens 64
Appendix B: Reference design for the PLCcore-9G20 ... 67
Appendix C: GNU GENERAL PUBLIC LICENSE.........ccooiiiiieieeeeeeeeeee 70
10 To =) PP PP PPPPPPR 75

© SYS TEC electronic GmbH 2010 L-1254e 1 Page 4

System Manual PLCcore-9G20

1 Introduction

Thank you that you have decided for the SYS TEC PLCcore-9G20. This product provides to you an

innovative and high-capacity PLC-kernel. Due to its high performance on a small manufactured size
and due to its low power consumption, it is well-suitable as communication and control processor for
embedded applications.

Please take some time to read through this manual carefully. It contains important information about
the commissioning, configuration and programming of the PLCcore-9G20. It will assist you in getting
familiar with the functional range and usage of the PLCcore-9G20. This document is complemented by
other manuals, e.g. for the OpenPCS IEC 61131 programming system and the CANopen extension for
IEC 61131-3. Table 3 in section 4.1 shows a listing of relevant manuals for the PLCcore-9G20. Please
also refer to those complementary documents.

For more information, optional products, updates et cetera, we recommend you to visit our website:
http://www.systec-electronic.com. The content of this website is updated periodically and provides to
you downloads of the latest software releases and manual versions.

Declaration of Electro Magnetic Conformity for PLCcore-9G20
(EMC law)

The PLCcore-9G20 has been designed to be used as vendor part for the integration into devices
(further industrial processing) or as Development Board for laboratory development (hard- and
software development).

After the integration into a device or when changes/extensions are made to this product, the
conformity to EMC-law again must be assessed and certified. Only thereafter products may be
launched onto the market.

The CE-conformity is only valid for the application area described in this document and only under
compliance with the following commissioning instructions! The PLCcore-9G20 is ESD-sensitive and
may only be unpacked, used and operated by trained personal at ESD-conform work stations.

The PLCcore-9G20 is a module for the application in automation technology. It features IEC 61131-3
programmability, uses standard CAN-bus and Ethernet network interfaces and a standardized network
protocol. Consequently, development times are short and hardware costs are reasonable. PLC-
functionality is created on-board through a CANopen network layer. Hence, it is not necessary for the
user to create firmware.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 5

http://www.systec-electronic.com/

System Manual PLCcore-9G20

2 Overview / Where to find what?

The PLCcore-9G20 is based on SYS TEC ECUcore-9G20 hardware and is extended by PLC-specific
functionality (PLD software, PLC firmware). There are different hardware manuals for all hardware
components such as the ECUcore-9G20 and the PLCcore-9G20 (the hardware of both modules is
identical), development boards and reference circuitry. Software-sided, the PLCcore-9G20 is
programmed with IEC 61131-3-conform OpenPCS programming environment. There are additional
manuals for OpenPCS that describe the handling of programming tools and SYS TEC-specific
extensions. Those are part of the software package "OpenPCS". Table 1 lists up all relevant manuals

for the PLCcore-9G20.

Table 1: Overview of relevant manuals for the PLCcore-9G20

Information about...

In which manual?

Basic information about the PLCcore-9G20
(configuration, administration, process image,
connection assignment, firmware update,
reference designs et cetera)

In this manual

Development of user-specific C/C++ applications
for the ECUcore-9G20 / PLCcore-9G20, VMware-
Image of the Linux development system

System Manual ECUcore-9G20
(Manual no.: L-1253)

Hardware description about the ECUcore-9G20 /
PLCcore-9G20, reference designs et cetera

Hardware Manual ECUcore-9G20
(Manual no.: L-1255)

Development Board for the ECUcore-9G20 /
PLCcore-9G20, reference designs et cetera

Hardware Manual Development Board 9G20
(Manual no.: L-1256)

Driver Development Kit (DDK) for the ECUcore-
9G20

Software Manual Driver Development Kit (DDK)
for ECUcore-9G20
(Manual no.: L-1257)

Basics about the OpenPCS IEC 61131
programming system

Brief instructions for the programming system
(Entry "OpenPCS Documentation” in the
OpenPCS program group of the start menu)
(Manual no.: L-1005)

Complete description of the OpenPCS IEC 61131
programming system, basics about the PLC
programming according to IEC 61131-3

Online help about the OpenPCS programming
system

Command overview and description of standard
function blocks according to IEC 61131-3

Online help about the OpenPCS programming
system

SYS TEC extension for IEC 61131-3:

- String functions

- UDP function blocks

- SIO function blocks

- FB for RTC, Counter, EEPROM, PWM/PTO

User Manual "SYS TEC-specific extensions for
OpenPCS/IEC 61131-3"
(Manual no.: L-1054)

© SYS TEC electronic GmbH 2010

L-1254e 1 Page 6

System Manual PLCcore-9G20

CANopen extension for IEC 61131-3 User Manual "CANopen extension for
(Network variables, CANopen function blocks) IEC 61131-3"
(Manual no.: L-1008)

IEC 61131-3: Programming Industrial Automation
Systems

John/Tiegelkamp

Springer-Verlag

ISBN: 3-540-67752-6

(a short version is available as PDF on the
OpenPCS installation CD)

Textbook about PLC programming according to
IEC 61131-3

Section 4 of this manual explains the commissioning of the PLCcore-9G20 based on the
Development Kit for the PLCcore-9G20.

Section 5 describes the connection assignment of the PLCcore-9G20.

Section 6 explains details about the application of the PLCcore-9G20, e.g. the setup of the
process image, the meaning of control elements and it provides basic information
about programming the module. Moreover, information is given about the usage of
CAN interfaces in connection with CANopen.

Section 0 describes details about the configuration of the PLCcore-9G20, e.g. the
configuration of Ethernet and CAN interfaces, the Linux Autostart procedure as well as
choosing the firmware version. Furthermore, the administration of the PLCcore-
9G20 is explained, e.g. the login to the system, the user administration and the
execution of software updates.

Section 8 defines the adaptation of in- and outputs as well as the process image and it
covers the data exchange between a PLC program and a user-specific C/C++
application via shared process image.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 7

System Manual PLCcore-9G20

3 Product Description

The PLCcore-9G20 as another innovative product extends the SYS TEC electronic GmbH product
range within the field of control applications. In the form of an insert-ready core module, it provides to
the user a complete and compact PLC. Due to CAN and Ethernet interfaces, the PLCcore-9G20 is
best suitable to perform decentralized control tasks.

Figure 1: Top view of the PLCcore-9G20

These are some significant features of the PLCcore-9G20:

High-performance CPU kernel (Atmel 32-Bit AT91SAM9G20, 400 MHz CPU Clock, 440 MIPS)
32 MByte SDRAM Memory, 16 MByte FLASH Memory

(max: 64 MByte SDRAM Memory, 64 MByte FLASH Memory)

1x 10/100 Mbps Ethernet LAN interface (1x with on—board PHY)

1x CAN 2.0B interface, usable as CANopen Manager (CiA 302-conform)

5x asynchronous serial ports (UART)

19 digital inputs, 8 digital outputs (standard configuration, modifiable via DDK)

3 analog inputs

4 high-speed counter (Pulse/Dir or A/B)

4 PWM-/PTO output (Pulse/Dir)

Externally usable SPI and I°C

On-board peripherals: RTC, temperature sensor

On-board software: Linux, PLC firmware, CANopen Master, HTTP and FTP server
Programmable in IEC 61131-3 and in C/C++

Function block libraries for communication (CANopen, Ethernet and UART)
Function block libraries for hardware components (RTC, Counter, PWM/PTO)
Support of typical PLC control elements (e.g. Run/Stop switch, Run-LED, Error-LED)
Linux-based (other user programs may run in parallel)

Easy, HTML-based configuration via WEB Browser

Remote Login via Telnet

Small dimension (78 x 54 mm)

There are different types of firmware available for the PLCcore-9G20. They differ regarding the
protocol used for the communication between Programming PC and PLCcore-9G20:

© SYS TEC electronic GmbH 2010 L-1254e 1 Page 8

System Manual PLCcore-9G20

Order number: 3390024 PLCcore-9G20/Z4 (CANopen)
communication with Programming PC via CANopen Protocol
(Interface CANO)

Order number: 3390025: PLCcore-9G20/Z5 (Ethernet)
communication with Programming PC via UDP Protocol
(Interface ETHO)

Making PLC available as an insert-ready core module with small dimensions reduces effort and costs
significantly for the development of user-specific controls. The PLCcore-9G20 is also very well suitable
as intelligent network node for decentralized processing of process signals (CANopen and UDP).
Additionally, it can be used as basic component for special assemblies or as PLC in hard-to-access
areas.

The on-board firmware of the PLCcore-9G20 contains the entire PLC runtime environment including
CANopen connection with CANopen master functionality. Thus, the module is able to perform control
tasks such as linking in- and outputs or converting rule algorithms. Data and occurrences can be
exchanged with other nodes (e.g. superior main controller, I/O slaves and so forth) via CANopen
network, Ethernet (UDP protocol) and serial interfaces (UART). Moreover, the number of in- and
outputs either is locally extendable or decentralized via CANopen devices. For this purpose, the
CANopen-Chip is suitable. It has also been designed as insert-ready core module for the appliance in
user-specific applications.

The PLCcore-9G20 provides 19 digital inputs (DI0...DI23, 3.3V level), 8 digital outputs (DOO0...DO21,
3.3V level), 4 high-speed counter input and 4 PWM/PTO output. This default I/O configuration can be
adapted for specific application requirements by using the Driver Development Kit (SO-1106).Saving
the PLC program in the on-board Flash-Disk of the module allows an automatic restart in case of
power breakdown.

Programming the PLCcore-9G20 takes place according to IEC 61131-3 using the OpenPCS
programming system of the company infoteam Software GmbH (http://www.infoteam.de). This
programming system has been extended and adjusted for the PLCcore-9G20 by the company

SYS TEC electronic GmbH. Hence, it is possible to program the PLCcore-9G20 graphically in
KOP/FUB, AS and CFC or textually in AWL or ST. Downloading the PLC program onto the module
takes place via Ethernet or CANopen — depending on the firmware that is used. Addressing in- and
outputs and creating a process image follows the SYS TEC scheme for compact control units. Like all
other SYS TEC controls, the PLCcore-9G20 supports backward documentation of the PLC program as
well as the debug functionality including watching and setting variables, single cycles, breakpoints and
single steps.

The PLCcore-9G20 is based on Embedded Linux as operating system. This allows for an execution of
other user-specific programs while PLC firmware is running. If necessary, those other user-specific
programs may interchange data with the PLC program via the process image. More information about
this is provided in section 8.

The Embedded Linux applied to the PLCcore-9G20 is licensed under GNU General Public License,
version 2. Appendix C contains the license text. All sources of LinuxBSP are included in the software
package SO-1105 ("VMware-Image of the Linux development system for the ECUcore-9G20"). If you
require the LinuxBSP sources independently from the VMware-Image of the Linux development
system, please contact our support:

support@systec-electronic.com

The PLC system and the PLC- and C/C++ programs developed by the user are not subject to GNU
General Public License!

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 9

http://www.infoteam.de/
mailto:support@systec-electronic.com

System Manual PLCcore-9G20

4 Development Kit PLCcore-9G20

4.1 Overview

The Development Kit PLCcore-9G20 is a high-capacity, complete package at a particularly favorable
price. Based on a compact PLC, it enables the user to perform decentralized, network-compatible
automation projects. Moreover, it facilitates the user to get to know the advantages of graphical and
textual PLC programming according to IEC 61131-3 — compared to conventional programming
languages.

Figure 2: Development Kit PLCcore-9G20

The Development Kit PLCcore-9G20 ensures quick and problem-free commissioning of the PLCcore-
9G20. Therefore, it combines all hard- and software components that are necessary to create own
applications: the core module PLCcore-9G20, the corresponding Development Board containing /O
periphery and numerous interfaces, the OpenPCS IEC 61131 programming system as well as further
accessory. Thus, the Development Kit forms the ideal platform for developing user-specific
applications based on the PLCcore-9G20. It allows for a cost-efficient introduction into the world of
decentralized automation technology. All components included in the Kit enable in- and output
extensions of the PLCcore-9G20 through CANopen-1/O-assemblies. Thus, the Development Kit may
also be used for projects that require PLC with network connection.

The Development Kit PLCcore-9G20 contains the following hardware components:

PLCcore-9G20

Development Board for the PLCcore-9G20

24V DC Power adapter

Ethernet cable

RS232 cable

CD with programming software, examples, documentation and other tools

The Development Board included in the Kit facilitates quick commissioning of the PLCcore-9G20 and
simplifies the design of prototypes for user-specific applications based on this module. Among other
equipment, the Development Board comprises different power supply possibilities, Ethernet interface,
CAN interface, 4 push buttons and 4 LED as control elements for digital in- and outputs and it
comprises a potentiometer for the analog input. Signals that are available from plug connectors of the
PLCcore-9G20 are linked to pin header connectors and enable easy connection of own peripheral

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 10

System Manual PLCcore-9G20

circuitry. Hence, the Development Board forms an ideal experimentation and testing platform for the
PLCcore-9G20.

The OpenPCS IEC 61131 programming system included in the Kit serves as software development
platform and as debug environment for the PLCcore-9G20. Thus, the module can either be
programmed graphically in KOP/FUB, AS and CFC or textually in AWL or ST. Downloading the PLC
program onto the module takes place via Ethernet or CANopen — depending on the firmware that is
used. High-capacity debug functionality such as watching and setting variables, single cycles,
breakpoints and single steps simplify the development and commissioning of user software for this
module.

4.2 Electric commissioning of the Development Kit PLCcore-9G20

A 24V DC power adapter necessary for running the Development Kit PLCcore-9G20 and Ethernet and
RS232 cables are already included in the Kit delivery. For commissioning the Kit, it is essential to use
at least the power supply connections (X700/X701), COMO (X400 on top) and ETHO (X500).
Furthermore, connection CANO (X400 below) is recommended. Table 2 provides an overview over the
connections of the Development Kit PLCcore-9G20.

Table 2: Connections of the Development Kit PLCcore-9G20

Connection Labeling on the Remark
Development
Board
Power supply X600 oder X601 The 24V DC power adapter included in the delivery

is intended for direct connection to X700.

ETHO (Ethernet) X304 This interface serves as communication interface
with the Programming PC and is necessary for the
program download (PLCcore-9G20/Z5, order
number 3390025), besides can be used freely for
the user program.

COMO (RS232) X301 This interface is used for the configuration of the
unit (e.g. setting the IP-address) and can be used
freely for general operation of the user program.

COM1 (RS232) X300 Interface can be used freely for the user program.
COM2 (RS232) X302n Interface can be used freely for the user program.
CANO (CAN) X303 This interface serves as communication interface

with the Programming PC and is necessary for the
program download (PLCcore-9G20/Z4, order
number 3390024), besides can be used freely for
the user program.

Figure 3 shows the positioning of the most important connections of the Development Board for the
PLCcore-9G20. Instead of using the 24V DC power adapter included in the Kit, the power supply may
optionally take place via X601 with an external source of 24V/1A.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 11

System Manual PLCcore-9G20

Figure 3: Positioning of most important connections on the Development Board for the PLCcore-9G20

4.3 Control elements of the Development Kit PLCcore-9G20

The Development Kit PLCcore-9G20 allows for easy commissioning of the PLCcore-9G20. It has
available various control elements to configure the module and to simulate in- and outputs for the
usage of the PLCcore-9G20 as PLC kernel. In Table 3 control elements of the Development Board are
listed and their meaning is described.

Table 3: Control elements of the Development Board for the PLCcore-9G20

Pushbutton 0 S400 Digital Input DIO (Process Image: %IX0.0)
Pushbutton 1 S401 Digital Input DI1 (Process Image: %IX0.1)
Pushbutton 2 S402 Digital Input DI2 (Process Image: %IX0.2)
Pushbutton 3 S403 Digital Input DI3 (Process Image: %IX0.3)
LED O D400 Digital Output DOO (Process Image: %QX0.0)
LED 1 D401 Digital Output DO1 (Process Image: %QX0.1)
LED 2 D402 Digital Output DO2 (Process Image: %QX0.2)
LED 3 D403 Digital Output DO3 (Process Image: %QX0.3)
Poti (ADC) R429 Analog Input AlO (Process Image: %IW8.0)
Run/Stop Switch | S404 Run / Stop to operate the PLC program, Reset control (see
section 6.7.1)

© SYS TEC electronic GmbH 2010

L-1254e_1

Page 12

System Manual PLCcore-9G20

Run-LED D405 Display of activity state of the PLC (see section 6.7.2)

Error-LED D406 Display of error state of the PLC (see section 6.7.3)

DIP-Switch S407 Configuration of bitrate and master mode CANO (see section
7.4.2)

Table 8 in section 6.4.1 provides a complete listing of the process image.

4.4 Optional accessory

4.4.1 USB-RS232 Adapter Cable

The SYS TEC USB-RS232 Adapter Cable (order number 3234000) provides a RS232 interface via an
USB-Port of the PC. Together with a terminal program, it enables the configuration of the PLCcore-
9G20 from PCs, e.g. laptop computers which do not have RS232 interfaces any more (see section
6.1).

Figure 4: SYS TEC USB-RS232 Adapter Cable

4.4.2 Driver Development Kit (DDK)

The ECUcore-9G20 Driver Development Kit (order number SO-1106) allows the user to independently
adjust the 1/O level to his own baseboard. Section 8.2 provides information about the Driver
Development Kit.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 13

System Manual PLCcore-9G20

5 Pinout of the PLCcore-9G20

Connections of the PLCcore-9G20 are directed to the outside via two female headers that are double-
row and mounted on the bottom of the module (X500, see Figure 5). Appropriate pin header
connectors as correspondent to the PLCcore-9G20 are available from company “W + P*:

W+P name: SMT Pin Headers, 1.27mm Pitch, Vertical, Double Row - 1.0mm Body
W+P order number: 7072-100-10-00-10-PPST (deliverable in other sizes)

X500
C% ARRNRNNNNNNNNNANNN NN NN NNNNNNNNANNRNRREREEND
C ENRENERENNR NN NN RN NN RNRNRNRERERERND
1 50

X501

INNNNNENENNER >
INNNNNENNNND |0

2 X500

B | INRRNNNNANNNNNNNNNNNNNNNNNNNNNANNNNNANNNNRRRNEEND
A (IERERERERERERNRNRNR NN NN NN NN NANANARERED

1 50 O

Figure 5: Pinout of the PLCcore-9G20 - top view

Figure 5 exemplifies the positioning of female headers (X500) on the PLCcore-9G20. The complete
connection assignment of this module is listed up in Table 4. The additional female header X501
shown in Figure 5 is reserved for a JTAG interface. It is only equipped on special development boards.
For the usage of the PLCcore-9G20 as PLC kernel it is without any importance. A detailed description
of all module connectors is located in the Hardware Manual ECUcore-9G20 (Manual no.: L-1255).
Appendix B includes reference designs for using the PLCcore-9G20 in customer-specific applications.

Table 4: Connections of the PLCcore-9G20, completely, sorted by connection pin

Signal Pin | Pin Signal Signal Pin | Pin Signal
GND A01 | BO1 GND GND C01 | DO1 +2V5_EPHY
/BOOT A02 | BO2 /MR ETHO_TX- C02 | D02 GND
WKUP A03 | B03 /RESET ETHO_TX+ C03 | D03 | ETH_SPEED
SHDN A04 | B04 [PFI ETHO_RX+ C04 | D04 | ETH_LINK/ACT
BMS A05 | BO5 WDI ETHO_RX- C05 | D05 GND
GND A06 | BO6 PS_IO GND C06 | D06 ADO
DRXD A07 | BO7 GND ADTRG C07 | D07 AD1
DTXD A08 | B08 RTSO ADVREF C08 | D08 AD2
DSRO A09 | B0O9 CTSO GND C09 | D09 GND
DTRO A10 | B10 RTS1 SD_MCDAO | C10 | D10 SD_MCDBO
DCDO A11 | B11 CTS1 SD_MCDA1 | C11 | D11 SD_MCDB1
GND A12 | B12 GND SD_MCDA2 | C12 | D12 SD_MCDB2
TXDO A13 | B13 TXD1 SD_MCDA3 | C13 | D13 SD_MCDB3
RXDO A14 | B14 RXD1 SD_MCCK C14 | D14 SD_MCCDA
TXD2 A15 | B15 TXD3 GND C15 | D15 SD_MCCDB

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 14

System Manual PLCcore-9G20

Signal Pin | Pin Signal Signal Pin | Pin Signal
RXD2 A16 | B16 RXD3 SCKO C16 | D16 GND
GND A17 | B17 TXD5 SCK1 C17 | D17 TIOA1
USB_HDPA A18 | B18 RXD5 SCK2 C18 | D18 TIOB1
USB_HDMA | A19 | B19 GND PCK1 C19 | D19 TIOA2
USB_HDPB A20 | B20 USB_DDP RKO C20 | D20 TIOB2
USB_HDMB | A21 | B21 USB_DDM TKO C21 | D21 TDO
GND A22 | B22 GND RFO C22 | D22 RDO
I12C_DATA A23 | B23 CAN_TXD TFO C23 | D23 GND
[2C_CLK A24 | B24 CAN_RXD GND C24 | D24 FPGA_IO0
GND A25 | B25 CAN_VCC FPGA_IO1 C25 | D25 FPGA_IO2
FPGA_1044 A26 | B26 GND FPGA_103 C26 | D26 FPGA_IO4
FPGA_lO46 A27 | B27 | FPGA_1045 FPGA_IO5 C27 | D27 FPGA_IO6
FPGA_1048 A28 | B28 | FPGA_1047 FPGA_IO7 C28 | D28 GND
FPGA_IO50 A29 | B29 | FPGA_1049 GND C29 | D29 FPGA_IO8
FPGA_l052 A30 | B30 | FPGA_IO51 FPGA_I09 C30 | D30 FPGA_IO10
GND A31 | B31 FPGA_1053 FPGA_1011 | C31 | D31 FPGA_1012
FPGA_IO54 A32 | B32 GND FPGA_[013 | C32 | D32 FPGA_IO14
FPGA_IO56 A33 | B33 | FPGA_IO55 FPGA_I015 | C33 | D33 GND
FPGA_IO58 A34 | B34 | FPGA_IO57 FPGA_1017 | C34 | D34 FPGA_IO16
FPGA_IO60 A35 | B35 | FPGA_I059 GND C35 | D35 FPGA_IO18
FPGA_1062 A36 | B36 | FPGA_I061 FPGA_1019 | C36 | D36 FPGA_1020
GND A37 | B37 | FPGA_IO63 FPGA_1021 | C37 | D37 FPGA_1022
FPGA_IO64 A38 | B38 GND FPGA_1023 | C38 | D38 FPGA_IO24
FPGA_IO66 A39 | B39 | FPGA_IO65 FPGA_1025 | C39 | D39 GND
FPGA_IO68 A40 | B40 | FPGA_I067 FPGA_1027 | C40 | D40 FPGA_IO26
FPGA_IO70 A41 | B41 FPGA_1069 GND C41 | D41 FPGA_1028
FPGA_IO72 A42 | B42 | FPGA_IO71 FPGA_ 1029 | C42 | D42 FPGA_IO30
GND A43 | B43 | FPGA_IO73 FPGA_IO31 | C43 | D43 FPGA_1032
FPGA_IO74 A44 | B44 GND FPGA_IO33 | C44 | D44 FPGA_I034
FPGA_IO76 A45 | B45 | FPGA_IO75 FPGA_1035 | C45 | D45 GND
FPGA_IO78 A46 | B46 | FPGA_IO77 FPGA_I037 | C46 | D46 FPGA_IO36
FPGA_IO80 A47 | B47 | FPGA_IO79 GND C47 | D47 FPGA_I038
VBAT A48 | B48 | FPGA_ 1081 FPGA_IO39 | C48 | D48 FPGA_I040
GND A49 | B49 GND FPGA_IO41 | C49 | D49 FPGA_1042
+3V3 A50 | B50 +3V3 FPGA_I043 | C50 | D50 GND

Table 5 is a subset of Table 4 and only includes all in- and outputs of the PLCcore-9G20 sorted by
their function.

Table 5: Connections of the PLCcore-9G20, only 1/0O, sorted by function

Connector | I/O-Pin (FPGA) PLC Function 1 PLC Function 2
A=alternative, S=simultaneous

B43 1073 DIO [SwitchO] S: CNTRO (IN/A)
Ad4 1074 DI1 [Switch1] S: CNTRO ('DIR/B)
B45 1075 DI2 [Switch2] S: CNTR1 (IN/A)
A45 1076 DI3 [Switch3] S: CNTR1 ('DIR/B)
B39 1065 Dl4
A39 1066 DI5
B40 1067 DI6
A40 1068 DI7

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 15

System Manual PLCcore-9G20

A29 1050 DI8 S: CNTR2 (IN/A)
B30 1051 DI9 S: CNTR2 (DIR/B)
A30 1052 DI10 S: CNTR3 (IN/A)
B31 1053 DI11 S: CNTR3 (DIR/B)
A32 1054 DI12

B33 1055 DI13

A33 1056 DI14

B34 1057 DI15

A34 1058 DI16

B35 1059 DI17

A35 1060 DI18

B41 1069 DOO [LEDO] A: PWMO (OUT)
Ad1 1070 DO1 [LED1] A: PWM1 (OUT)
B42 1071 DO2 [LED2] A: PWM2 (OUT)
Ad2 1072 DO3 [LED3] A: PWM3 (OUT)
B36 1061 DO4

A36 1062 DO5

B37 1063 DO6

A38 1064 DO7

A46 1078 /Error-LED

B46 1077 /Run-LED

B47 1079 R/S/M-Switch

A47 1080 R/S/M-Switch

B48 1081 R/S/M-Switch

Table 6 defines the coding of the Run/Stop switch. Functionality of the Run/Stop switch for PLC
firmware is explained in section 6.7.1. If no Run/Stop switch is intended for the usage of the PLCcore-
9G20 on an application-specific baseboard, the coding for "Run" must be hard-wired at the module
connections (also see reference design in Appendix B).

Table 6: Coding of the Run/Stop switch

Modus Pin B47 Pin A47 Pin B48
(1079) (1080) (1081)
Run 1 0 1
Stop 1 1 0
MRes 0 0 0

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 16

System Manual PLCcore-9G20

6 PLC Functionality of the PLCcore-9G20

6.1 Overview

The PLCcore-9G20 realizes a complete Linux-based compact PLC as an insert-ready core ("Core").
There, the PLCcore-9G20 is based on the hardware ECUcore-9G20 and extends it by PLC-specific
functionality (FPGA software, PLC firmware). Both modules, the ECUcore-9G20 and the PLCcore-
9G20, use the same Embedded Linux as operating system. Consequently, the configuration and the
C/C++ programming of the PLCcore-9G20 are almost identical with the ECUcore-9G20.

6.2 System start of the PLCcore-9G20

By default, the PLCcore-9G20 loads all necessary firmware components upon Power-on or Reset and
starts running the PLC program afterwards. Hence, the PLCcore-9G20 is suitable for the usage in
autarchic control systems. In case of power breakdown, such systems resume the execution of the
PLC program independently and without user intervention. Figure 6 shows the system start in detail:

Power-on / Reset

A 4

For more details on how to
Start Linux-Bootloader deactivate the autarchic Linux

"U-Boot" start and to activate the “U-Boot"
command prompt compare
y section 7.2.
Start Linux

Operating System

Load Module Drivers
(O, CAN, RTC, etc.)

v

A 4

Details about the start script
"/home/etc/autostart” are
covered in section 7.5.

Run Boot Script Start Servers
"/home/etc/autostart” "] (HTTP-Server, FTP-Server)

y

\4

Start PLC Firmware

A 4

For detailed information about
Run PLC User Program PLC programming of the
PLCcore-9G20 compare section
6.3.

Figure 6: System start of the PLCcore-9G20

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 17

System Manual PLCcore-9G20

6.3 Programming the PLCcore-9G20

The PLCcore-9G20 is programmed with IEC 61131-3-conform OpenPCS programming environment.
There exist additional manuals about OpenPCS that describe the handling of this programming tool.
Those are part of the software package "OpenPCS". All manuals relevant for the PLCcore-9G20 are
listed in Table 1.

PLCcore-9G20 firmware is based on standard firmware for SYS TEC's compact control units.
Consequently, it shows identical properties like other SYS TEC control systems. This affects
especially the process image setup (see section 6.4) as well as the functionality of control elements
(Hex-Encoding switch, DIP-Switch, Run/Stop switch, Run-LED, Error-LED).

Depending on the firmware version used, PLCcore-9G20 firmware provides numerous function blocks
to the user to access communication interfaces. Table 7 specifies the availability of FB communication
classes (SIO, CAN, UDP) for different PLCcore-9G20 firmware versions. Section 7.6 describes the
selection of the appropriate firmware version.

Table 7: Support of FB communication classes for different types of the PLCcore

Type of PLCcore-9G20/Z3 | PLCcore-9G20/Z4 | PLCcore-9G20/Z5 | Remark

Interface Art. no: 3390023 Art. no: 3390024 Art. no: 3390025

CAN - X X FB description see
manual L-1008

UDP - X X FB description see
manual L-1054

SIO X X X FB description see
manual L-1054

Table 22 in Appendix A contains a complete listing of firmware functions and function blocks that are
supported by the PLCcore-9G20.

Detailed information about using the CAN interfaces in connection with CANopen is provided in
section 6.9.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 18

System Manual PLCcore-9G20

6.4 Process image of the PLCcore-9G20

6.4.1 Local In- and Outputs

Compared to other SYS TEC compact control systems, the PLCcore-9G20 obtains a process image
with identical addresses. All in- and outputs listed in Table 8 are supported by the PLCcore-9G20.

Table 8: Assignment of in- and outputs to the process image of the PLCcore-9G20

I/O of the PLCcore-9G20 Address and Data type in the Process Image
DIO ... DI7 %IB0.0 as Byte with DIO ... DI7
%I1X0.0 ... %IX0.7 as single Bit for each input
DI8 ... DI15 %IB1.0 as Byte with DI8 ... DI15
%1X1.0 ... %IX1.7 as single Bit for each input
DI16 ... DI23 %IB2.0 as Byte with DI16 ... DI23

(DI19 ... DI23 as user specific %1X2.0 ... %IX2.7 as single Bit for each input
extension only)

DI24 ... DI31 %IB3.0 as Byte with DI24 ... DI31

(as user specific extension only) | %IX3.0 ... %IX3.7 as single Bit for each input
DI32 ...DI39 %IB4.0 as Byte with DI32 ... DI139
(as user specific extension only) | %I1X4.0 ... %IX4.7 as single Bit for each input
DI40 ... Di47 %IB5.0 as Byte with DI40 ... D147

(as user specific extension only) | %IX5.0 ... %IX5.7 as single Bit for each input
AlO %IW8.0 15Bit + sign (0 ... +32767)

(external ADC of the Development
Board), see @

Co %ID40.0 31Bit + sign (-2%' - 2°" -1)
counter input: DIO, direction: DI1, see section 6.6.1
c1 %ID44.0 31Bit + sign (-2%' - 2°" 1)
counter input: DI2, direction: DI3, see section 6.6.1
c2 %ID48.0 31Bit + sign (-2%' - 2°" 1)
counter input: DI8 direction: DI9, see section 6.6.1
C3 %ID52.0 31Bit + sign (-2%' - 2°" -1)
counter input: DI10, direction: DI11, see section 6.6.1
On-board Temperature Sensor, %ID72.0 31Bit + sign as 1/10000 °C
see @
DO0O ...DO7 %QB0.0 as Byte with DOO ... DO7
%QX0.0 ... %QX0.7 as single Bit for each output
DO8 ...DO15 %QB1.0 as Byte with DO8 ... DO15
(as user specific extension only) [%QX1.0 ... %QX1.7 as single Bit for each output
DO16 ... DO23 %QB2.0 as Byte with DO16 ... DO23
(as user specific extension only) [%QX2.0 ... %QX2.7 as single Bit for each output
D024 ... DO31 %QB3.0 as Byte with DO24 ... DO31
(as user specific extension only) [%QX3.0 ... %QX3.7 as single Bit for each output
D032 ... D039 %QB4.0 as Byte with DO32 ... DO39
(as user specific extension only) | %QX4.0 ... %QX4.7 as single Bit for each output
DO40 ... DO47 %QB5.0 as Byte with DO40 ... DO47

(as user specific extension only) [%QX5.0 ... %QX5.7 as single Bit for each output

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 19

System Manual PLCcore-9G20

PO %QX0.0 (default value for inactive generator)
Impulse output: DOO, see section 6.6.2

P1 %QX0.1 (default value for inactive generator)
Impulse output: DO1, see section 6.6.2

P2 %QX0.2 (default value for inactive generator)
Impulse output: DO2, see section 6.6.2

P3 %QX0.3 (default value for inactive generator)
Impulse output: DO3, see section 6.6.2

@ This marked components are only available in the process image, if the Option "Enable

extended 1/0s" is activated within the PLC configuration (see section 7.4.1). Alternatively, entry
"EnableExtlo=" can directly be set within section "[Procimg]" of the configuration file
"/home/plc/plccore-9g20.cfg" (see section 7.4.3). The appropriate configuration setting is
evaluated upon start of the PLC firmware.

In- and outputs of thePLCcore-9G20 are not negated in the process image. Hence, the H-level at one
input leads to value "1" at the corresponding address in the process image. Contrariwise, value "1" in
the process image leads to an H-level at the appropriate output.

6.4.2 In- and outputs of user-specific baseboards

The connection lines leading towards the outside provides to the user most effective degrees of
freedom for designing the in-/output circuit of the PLCcore-9G20. Therewith, all in- and outputs of the
PLCcore-9G20 can be flexibly adjusted to respective requirements. This implicates that the process
image of PLCcore-9G20 is significantly conditioned by the particular, user-specific in-/output circuit.
Including the software for in-/output components into the process image requires the "Driver
Development Kit for ECUcore-9G20" (order number SO-1106).

6.5 Communication interfaces

6.5.1 Serial interfaces

The PLCcore-9G20 features 5 serial interfaces (COMO ... COM4) that function as RS-232. Details
about hardware activation are included in the "Hardware Manual Development Board ECUcore-9G20"
(Manual no.: L-1256).

COMO: Interface COMO primarily serves as service interface to administer the PLCcore-9G20. By
default, in boot script "/etc/inittab" it is assigned to the Linux process "getty" and is used
as Linux console to administer the PLCcore-9G20. Even though interface COMO may be
used from a PLC program via function blocks of type "SIO_Xxx" (see manual "SYS TEC-
specific Extensions for OpenPCS / IEC 61131-3", Manual no.: L-1054), only signs should
be output in this regard. The module tries to interpret and to execute signs that it receives
as Linux commands.

To freely use an interface from a PLC program, boot script "/etc/inittab” must be adjusted
appropriately which is only possible by modifying the Linux image. This requires software
package SO-1105 ("VMware-Image of the Linux Development System for the ECUcore-
9G20").

COML1..4: Interfaces COM1 ... COM4 are disposable and support data exchange between the
PLCcore-9G20 and other field devices kept under control of the PLC program.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 20

System Manual PLCcore-9G20

Interfaces COM1 ... COM4 may be used from a PLC program via function blocks of type
"SIO_Xxx" (see manual "SYS TEC-specific Extensions for OpenPCS / IEC 61131-3",
Manual no.: L-1054).

6.5.2 CAN interfaces

The PLCcore-9G20 features 1 CAN interface (CANO). Details about the hardware activation are
included in the "Hardware Manual Development Board ECUcore-9G20" (Manual no.: L-1256).

The CAN interface allow for data exchange with other devices via network variables and they are
accessible from a PLC program via function blocks of type "CAN_Xxx" (see section 6.9 and "User
Manual CANopen Extension for IEC 61131-3", Manual no.: L-1008).

Section 6.9 provides detailed information about the usage of the CAN interface in connection with
CANopen.

6.5.3 Ethernet interfaces

The PLCcore-9G20 features 1 Ethernet interface (ETHO). Details about the hardware activation are
included in the "Hardware Manual Development Board ECUcore-9G20" (Manual no.: L-1256).

The Ethernet interface serves as service interface to administer the PLCcore-9G20 and it enables data
exchange with other devices. The interface is accessible from a PLC program via function blocks of
type "LAN_Xxx" (see manual "SYS TEC-specific Extensions for OpenPCS / IEC 61131-3", Manual
no.: L-1054).

The exemplary PLC program "UdpRemoteCtrl" illustrates the usage of function blocks of type
"LAN_Xxx" within a PLC program.

6.6 Specific peripheral interfaces

6.6.1 Counter inputs

The PLCcore-9G20 features 4 fast counter inputs (CO ... C3). Prior to its usage, all counter inputs
must be parameterized via function block "CNT_FUD" (see manual "SYS TEC-specific Extensions for
OpenPCS / IEC 61131 3", Manual no.: L 1054). Afterwards, in a PLC program the current counter
value is accessible via process image (see Table 8 in section 6.4.1) or via function block "CNT_FUD".
Table 9 lists the allocation between counter channels and inputs.

Table 9: Allocation between counter channels and inputs

Counter channel Counter input _Optional direction Counter yalue in
input process image

Co CO0 (DI0) %I1X0.0 DI1 %I1X0.1 %ID40.0

C1 C1 (DI2) %I1X0.2 DI3 %I1X0.3 %ID44.0

Cc2 C2 (DI8) %IX1.0 DI9 %I1X1.1 %1D48.0

C3 C2 (DIM10) %IX1.2 DI11 %IX1.3 %ID52.0

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 21

System Manual PLCcore-9G20

To ensure the minimum slew rate for the counter inputs, required by FPGA, it is necessary to use the
interface connection as shown in Figure 35 in Appendix B. A too small slew rate may lead to wrong
counter values.

6.6.2 Pulse outputs

To release PWM and PTO signal sequences, the PLCcore-9G20 features 4 pulse outputs (PO ... P3).
Prior to its usage, all pulse outputs must be parameterized using function block "PTO_PWM" (see
manual "SYS TEC-specific Extensions for OpenPCS / IEC 61131 3", Manual no.: L 1054). After the
impulse generator is started, it takes over the control of respective outputs. After the impulse generator
is deactivated, the respective output adopts the corresponding value that is filed in the process image
for this output (see Table 8 in section 6.4.1). Table 10 lists the allocations between impulse channels
and outputs.

Table 10: Allocation between impulse channels and outputs

Impulse channel Impulse output

PO PO (DOO0) %QX0.0
P1 P1(DO1) %QX0.1
P2 PO (DO2) %QX0.2
P3 P1 (DO3) %QX0.3

6.7 Control and display elements

6.7.1 Run/Stop switch

Module connections "1079", "lO80" and "I081" (see Table 5 and see reference design in Appendix B)
are designed to connect a Run/Stop switch. Using this Run/Stop switch makes it possible to start and
interrupt the execution of the PLC program. Together with start and stop pushbuttons of the OpenPCS
programming environment, the Run/Stop switch represents a "logical" AND-relation. This means that
the PLC program will not start the execution until the local Run/Stop switch is positioned to "Run" AND
additionally the start command (cold, warm or hot start) is given by the OpenPCS user interface. The
order hereby is not relevant. A run command given by OpenPCS while at the same time the Run/Stop
switch is positioned to "Stop" is visible through quick flashing of the Run-LED (green).

Positioned to "MRes" ("Modul Reset"), the Run/Stop switch allows for local deletion of a PLC program
from the PLCcore-9G20. This might for example be necessary if an error occurs and the PLC program
is running an infinite loop and consequently, accessing the OpenPCS programming environment is no
longer possible. The procedure for deleting a PLC program is described in section 6.8.

6.7.2 Run-LED (green)

The module connection "/Run-LED" (see Table 5 and reference design in Appendix B) is designed for
connecting a Run-LED. This Run-LED provides information about the activity state of the control
system. The activity state is shown through different modes:

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 22

System Manual PLCcore-9G20

Table 11: Display status of the Run-LED

LED Mode

PLC Activity State

Off

The PLC is in state "Stop":
e the PLC does not have a valid program,

e the PLC has received a stop command from the OpenPCS programming
environment or

o the execution of the program has been canceled due to an internal error

Quick flashing in
relation 1:8 to
pulse

The PLC is on standby but is not yet executing:

e The PLC has received a start command from the OpenPCS programming
environment but the local Run/Stop switch is still positioned to "Stop"

Slow flashing in
relation 1:1 to
pulse

The PLC is in state "Run" and executes the PLC program.

Quick flashing in
relation 1:1 to
pulse

The PLC is in mode "Reset", compare section 6.8

6.7.3 Error-LED (red)

Module connection "/Error-LED" (see Table 5 and reference design in Appendix B) is designed for
connecting an Error-LED. This Error-LED provides information about the error state of the control
system. The error state is represented through different modes:

Table 12: Display status of the Error-LED

LED Mode

PLC Error State

Off

No error has occurred; the PLC is in normal state.

Permanent light

A severe error has occurred:

e The PLC was started using an invalid configuration (e.g. CAN node address
0x00) and had to be stopped or

e A severe error occurred during the execution of the program and caused
the PLC to independently stop its state "Run" (division by zero, invalid Array
access, ...), see below

Slow flashing in
relation 1:1 to
pulse

A network error occurred during communication to the programming system; the
execution of a running program is continued. This error state will be reset
independently by the PLC as soon as further communication to the
programming system is successful.

Quick flashing in
relation 1:1 to
pulse

The PLC is in mode "Reset", compare section 6.8.

Quick flashing in
relation 1:8 to
pulse

The PLC is on standby, but is not yet running:

e The PLC has received a start command from the OpenPCS programming
environment but the local Run/Stop switch is positioned to "Stop"

In case of severe system errors such as division by zero of invalid Array access, the control system
passes itself from state "Run" into state "Stop". This is recognizable by the permanent light of the

© SYS TEC electronic GmbH 2010

L-1254e_1 Page 23

System Manual PLCcore-9G20

Error-LED (red). In this case, the error cause is saved by the PLC and is transferred to the computer
and shown upon next power-on.

6.8 Local deletion of a PLC program

If the Run/Stop switch is positioned to "MRes" ("Modul Reset") (see section 6.7.1), it is possible to
delete a program from the PLCcore-9G20. This might for example be necessary if an error occurs and
the PLC program is running an infinite loop and consequently, accessing the OpenPCS programming
environment is no longer possible. To prevent deleting a PLC program by mistake, it is necessary to
keep to the following order:

(1) Position the Run/Stop switch to "MRes"

(2) Reset the PLCcore-9G20 (by pressing the reset pushbutton of the Development Board or through
temporary power interrupt)
= Run-LED (green) is flashing quickly in relation 1:1 to the pulse

(3) Position the Run/Stop switch to "Run"
= Error-LED (red) is flashing quickly in relation 1:1 to the pulse

(4) Reposition Run/Stop switch back to "MRes" within 2 seconds
= PLCcore-9G20 is deleting PLC program
= Run-LED (green) and Error-LED (red) are both flashing alternately

(5) Reposition Run/Stop switch to "Stop" or "Run" and reset again to start the PLCcore-9G20 and
bring it into normal working state

If Reset of the PLCcore-9G20 is activated (e.g. through temporary power interrupt) while at the same
time the Run/Stop switch is positioned to "MRes", the module recognizes a reset requirement. This is
visible through quick flashing of the Run-LED (green). This mode can be stopped without risk.
Therefore, the Run/Stop switch must be positioned to "Run" or "Stop" (Error-LED is flashing) and it
must be waited for 2 seconds. The PLCcore-9G20 independently stops the reset process after 2
seconds and starts a normal working state with the PLC program which was saved last.

6.9 Using CANopen for CAN interfaces

The PLCcore-9G20 features 1 CAN interface (CANO), usable as CANopen Manager (conform to CiA
Draft Standard 302). The configuration of this interface (active/inactive, node number, Bitrate, Master
on/off) is described in section 7.4.

The CAN interface allow for data exchange with other devices via network variables and is usable
from a PLC program via function blocks of type "CAN_Xxx". More details are included in "User Manual
CANopen Extension for IEC 61131-3", Manual no.: L-1008.

The CANopen services PDO (Process Data Objects) and SDO (Service Data Objects) are two
separate mechanisms for data exchange between single field bus devices. Process data sent from a
node (PDO) are available as broadcast to interested receivers. PDOs are limited to 1 CAN telegram
and therewith to 8 Byte user data maximum because PDOs are executed as non-receipt broadcast
messages. On the contrary, SDO transfers are based on logical point-to-point connections ("Peer to
Peer") between two nodes and allow the receipted exchange of data packages that may be larger than
8 Bytes. Those data packages are transferred internally via an appropriate amount of CAN telegrams.
Both services are applicable for interface CANO as well as for CAN1 of the PLCcore-9G20.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 24

System Manual PLCcore-9G20

SDO communication basically takes place via function blocks of type "CAN_SDO_Xxx" (see "User
Manual CANopen Extension for IEC 61131-3", Manual no.: L-1008). Function blocks are also available
for PDOs ("CAN_PDO_Xxx"). Those should only be used for particular cases in order to also activate
non-CANopen-conform devices. For the application of PDO function blocks, the CANopen
configuration must be known in detail. The reason for this is that the PDO function blocks only use 8
Bytes as input/output parameter, but the assignment of those Bytes to process data is subject to the
user.

Instead of PDO function blocks, network variables should mainly be used for PDO-based data
exchange. Network variables represent the easiest way of data exchange with other CANopen nodes.
Accessing network variables within a PLC program takes place in the same way as accessing internal,
local variables of the PLC. Hence, for PLC programmers it is not of importance if e.g. an input variable
is allocated to a local input of the control or if it represents the input of a decentralized extension
module. The application of network variables is based on the integration of DCF files that are
generated by an appropriate CANopen configurator. On the one hand, DCF files describe
communication parameters of any device (CAN Identifier, etc.) and on the other hand, they allocate
network variables to the Bytes of a CAN telegram (mapping). The application of network variables only
requires basic knowledge about CANopen.

In a CANopen network, exchanging PDOs only takes place in status "OPERATIONAL". If the
PLCcore-9G20 is not in this status, it does not process PDOs (neither for send-site nor for receive-
site) and consequently, it does not update the content of network variables. The CANopen Manager is
in charge of setting the operational status "OPERATIONAL", "PRE-OPERATIONAL" etc. (mostly also
called "CANopen Master"). In typical CANopen networks, a programmable node in the form of a PLC
is used as CANopen-Manager. The PLCcore-9G20 is optionally able to take over tasks of the
CANopen Manager. How the Manager is activated is described in section 7.4.

As CANopen Manager, the PLCcore-9G20 is able to parameterize the CANopen 1/O devices
("CANopen-Slaves") that are connected to the CAN bus. Therefore, upon system start via SDO it
transfers DCF files generated by the CANopen configurator to the respective nodes.

6.9.1 CAN interface CANO

Interface CANO features a dynamic object dictionary. This implicates that after activating the PLC, the
interface does not provide communication objects for data exchange with other devices. After
downloading a PLC program (or its reload from the non-volatile storage after power-on), the required
communication objects are dynamically generated according to the DCF file which is integrated in the
PLC project. Thus, CAN interface CANO is extremely flexible and also applicable for larger amount of
data.

For the PLC program, all network variables are declared as "VAR_EXTERNAL" according to
IEC61131-3. Hence, they are marked as ,outside of the control, e.g.:

VAR_EXTERNAL
NetvVarl : BYTE ;
NetVar2 : UINT ;

END_VAR

A detailed procedure about the integration of DCF files into the PLC project and about the declaration
of network variables is provided in manual "User Manual CANopen Extension for IEC 61131-3"
(Manual no.: L-1008).

When using CAN interface CANO it must be paid attention that the generation of required objects
takes place upon each system start. This is due to the dynamic object directory. "Design instructions"
are included in the DCF file that is integrated in the PLC project. Hence, changes to the
configuration can only be made by modifying the DCF file. This implies that after the network
configuration is changed (modification of DCF file), the PLC project must again be translated and
loaded onto the PLCcore-9G20.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 25

System Manual PLCcore-9G20

6.9.2 Additional CAN interfaces

In general, the PLC firmware used for PLCcore-9G20 is able to simultaneously operate several CAN
interfaces (like other PLC types such as the PLCcore-5484 or PLCmodule-C32).

If necessary, more CAN interfaces can be connected to the module externally. Please contact our
support employee if you are interested in this option:

support@systec-electronic.com

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 26

mailto:support@systec-electronic.com

System Manual PLCcore-9G20

7 Configuration and Administration of the PLCcore-9G20

7.1 System requirements and necessary software tools

The administration of the PLCcore-9G20 requires any Windows or Linux computer that has available
an Ethernet interface and a serial interface (RS232). As alternative solution to the on-board serial
interface, SYS TEC offers a USB-RS232 Adapter Cable (order number 3234000, see section 4.4.1)
that provides an appropriate RS232 interface via USB port.

All examples referred to in this manual are based on an administration of the PLCcore-9G20 using a
Windows computer. Procedures using a Linux computer would be analogous.

To administrate the PLCcore-9G20 the following software tools are necessary:

Terminal program A Terminal program allows the communication with the command shell of
the PLCcore-9G20 via a serial RS232 connection to COMO of the
PLCcore-9G20. This is required for the Ethernet configuration of the
PLCcore-9G20 as described in section 7.3. After completing the Ethernet
configuration, all further commands can either be entered in the Terminal
program or alternatively in a Telnet client (see below).

Suitable as Terminal program would be "HyperTerminal" which is included in
the Windows delivery or "TeraTerm" which is available as Open Source and
meets higher demands (downloadable from: http://ttssh2.sourceforge.jp).

Telnet client Telnet-Client allows the communication with command shell of the
PLCcore-9G20 via Ethernet connection to ETHO of the PLCcore-9G20.
Using Telnet clients requires a completed Ethernet configuration of the
PLCcore-9G20 according to section 7.3. As alternative solution to Telnet
client, all commands can be edited via a Terminal program (to COMO of the
PLCcore-9G20).

Suitable as Telnet client would be "Telnet" which is included in the Windows
delivery or "TeraTerm" which can also be used as Terminal program (see
above).

FTP client An FTP client allows for file exchange between the PLCcore-9G20 (ETHO)
and the computer. This allows for example editing configuration files by
transferring those from the PLCcore-9G20 onto the computer where they
can be edited and get transferred back to the PLCcore-9G20. Downloading
files onto the PLCcore-9G20 is also necessary to update the PLC firmware.
(Advice: The update of PLC firmware is not identical with the update of the
PLC user program. The PLC program is directly transferred to the module
from the OpenPCS programming environment. No additional software is
needed for that.)

Suitable as FTP client would be "WinSCP" which is available as Open
Source (download from: http://winscp.net). It only consists of one EXE file
that needs no installation and can be booted immediately. Furthermore,
freeware "Core FTP LE" (downloadable from: http://www.coreftp.com) or
"Total Commander" (integrated in the file manager) are suitable as FTP
client.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 27

http://ttssh2.sourceforge.jp/
http://winscp.net/
http://www.coreftp.com/

System Manual PLCcore-9G20

TFTP server

The TFTP server is necessary to update the Linux-Image on the PLCcore-

9G20. Freeware "TFTPD32" (download from: http://tftpd32.jounin.net) is
suitable as TFTP server. It only consists of one EXE file that needs no
installation and can be booted immediately.

For programs that communicate via Ethernet interface, such as FTP client or TFTP server, it must be
paid attention to that rights in the Windows-Firewall are released. Usually Firewalls signal when a
program seeks access to the network and asks if this access should be permitted or denied. In this
case access is to be permitted.

7.2 Activation/Deactivation of Linux Autostart

During standard operation mode, the bootloader "U-Boot" automatically starts the Linux operating
system of the module after Reset (or Power-on). Afterwards, the operating system loads all further
software components and controls the PLC program execution (see section 6.1). For service
purposes, such as configuring the Ethernet interface (see section 7.3) or updating the Linux-Image
(see section 7.13.2), it is necessary to disable this Autostart mode and to switch to "U-Boot" command
prompt instead (configuration mode).

The automatic boot of Linux operating system is connected with the simultaneous compliance with
various conditions ("AND relation"). Consequently, for disabling Linux Autostart, it is sufficient to
simply not comply with one of the conditions.

Table 13 lists up all conditions that are verified by the bootloader “U-Boot”. All of them must be
complied with to start an Autostart for the Linux-Image.

Table 13: Conditions for booting Linux

No. Condition Remark
1 DIP1 of PLCcore-9G20 = "Off" DIP-Switch 1 on the PLCcore-9G20 and module
connection "/BOOT" are electrically connected in
AND parallel. Only if both elements are not active (DIP switch
1 open, module connection "/BOOT" not active), the
Connection "/BOOT" = High Signal "/BOOT" is at H-level for PLCcore-9G20 and
(pushbutton S406 on the releases the Linux Autostart.
Development Board not The position of DIP-Switch 1 on the PLCcore-9G20 is
pressed) shown in Figure 7, the position of connection "/BOOT" on
the module pin connector is defined in the Hardware
Manual ECUcore-9G20 (Manual no.: L-1255).
2 No abort of Autostart via COMO | If the conditions above are met, "U-Boot" checks the

of the PLCcore-9G20

serial interface COMO of the PLCcore-9G20 for about 1
second after Reset regarding the reception of SPACE
signals (ASCII 20H). If such a signal is received within
that time, "U-Boot" will disable the Linux Autostart and
will activate its own command prompt instead.

© SYS TEC electronic GmbH 2010

L-1254e_1 Page 28

http://tftpd32.jounin.net/

System Manual PLCcore-9G20

After activating the Reset pushbutton (e.g. pushbutton S405 on the Development Board), the "U-Boot"
command prompt answers.

Figure 7 shows the positioning and meaning of DIP-Switch 1 on the PLCcore-9G20. This DIP-Switch
might be hard to access if the module is built in. Thus, the Portpin of the processor that is connected to
the switch is available as connection "/BOOT" on the pin connector of the PLCcore-9G20 (see Table
5).

DiP1=0ON DIP1 = Off
Stop in U-Boot Boot Linux &
(Config Mode) Start Applications

11 SORCEITT IR (2 B |
znRrETITRRIRAY A & .

= -
"_:' =iem (0
8 v e
Aha”

Figure 7: Positioning and meaning of DIP-Switch 1 on the PLCcore-9G20

Communicating with the bootloader "U-Boot" only takes place via the serial interface COMO of the
PLCcore-9G20. As receiver on the computer one of the terminal programs must be started (e.g.
HyperTerminal or TeraTerm, see section 7.1) and must be configured as follows (see Figure 8):

115200 Baud
8 Data bit

1 Stop bit

no parity

no flow control

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 29

System Manual PLCcore-9G20

Tera Term: Senal port setup

Port: i 0K
Baud rate: m
Data: m Cancel
Parity: m
Stop: Mow] _ Heb
Flow control: m

|—Transmit delay

II] msecfchar II] msecfline

Figure 8: Terminal configuration using the example of "TeraTerm"

7.3 Ethernet configuration of the PLCcore-9G20

The main Ethernet configuration of the PLCcore-9G20 takes place within the bootloader "U-Boot" and
is taken on for all software components (Linux, PLC firmware, HTTP server etc.). The Ethernet
configuration is carried out via the serial interface COMO. Therefore, the "U-Boot" command
prompt must be activated as described in section 7.2. Table 14 lists up "U-Boot" commands
necessary for the Ethernet configuration of the PLCcore-9G20.

Table 14: "U-Boot" configuration commands of the PLCcore-9G20

Configuration Command Remark
MAC address setenv ethaddr The MAC address worldwide is a clear
SXXIXXEXXEXXIXXEXX> identification oft he module and is assigned by
the producer. It should not be modified by
the user.
IP address setenv ipaddr This command sets the local IP address of the
XXX XXX XXX XXX> PLCcore-9G20. The IP address is to be
defined by the network administrator.
Network mask setenv netmask This command sets the network mask of the
XXX XXX XXX XXX> PLCcore-9G20. The network mask is to be
defined by the network administrator.
Gateway address | setenv gatewayip This command defines the IP address of the
XXX XXX XXX XXX> gateway which is to be used by the PLCcore-

9G20. The gateway address is set by the
network administrator.

Advice: If PLCcore-9G20 and Programming
PC are located within the same sub-net,
defining the gateway address may be skipped
and value "0.0.0.0" may be used instead.

Saving the saveenv This command saves active configurations in
configuration the flash of the PLCcore-9G20.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 30

System Manual PLCcore-9G20

Modified configurations may be verified again by entering "printenv" in the "U-Boot" command prompt.
Active configurations are permanently saved in the Flash of the PLCcore-9G20 by command

saveenv
Modifications are adopted upon next Reset of the PLCcore-9G20.

B C0oM1:115200baud - Tera Term ¥T 10| x|
File Edit Setup Contral “Window Fesize Help

-Boot 2009.11 (Jul 14 2010 - 09:22:32) j
(c1 2010 by 5¥3 TEC elctronic GubH, M 1.04

[IEAH: 32 HE

Flash: 16 HEB

In: serial

ut: zerial

Frr: serial

Hot: nachl

nachl: Starting autoneqot iation...
nachl: Autonegot iat ion conplete
nach0: Link up, 100Hbps full-duples [lpa: Dxcdell
autoboot in 1 seconds

-Boot» seteny ipadde 192.168.10.248
-Boot> seteny netnask 255.255.2E5.0
-Boot> seteny gatenayip 0.0.0.0
-Boot» saweany

aving Environnent to Flash...
h-Frotected 1 sectors

Frazing Flazh...

. done

Frazed 1 sectors

Writing to Flash... 9. .8, .7 . 6 0B 4l Ldl 2l . odone
Frotected 1 sectors

-Boot>]

Figure 9: Ethernet configuration of the PLCcore-9G20

After the configuration is finished and according to section 7.2, all conditions for a Linux
Autostart must be re-established.

Upon Reset (e.g. pushbutton S405 on the Development Board) the module starts using the active
configurations.

Advice: After the configuration is finished, the serial connection between PC and PLCcore-9G20
is no longer necessary.

7.4 PLC configuration of the PLCcore-9G20

7.4.1 PLC configuration via WEB-Frontend

After finishing the Ethernet configuration (see section 7.3), all further adjustments can take place via
the integrated WEB-Frontend of the PLCcore-9G20. For the application of the PLCcore-9G20 using
the Development Kit, basic configurations may also be set via local control elements (see section
7.4.2).

To configure the PLCcore-9G20 via WEB-Frontend it needs a WEB-Browser on the PC (e.g. Microsoft
Internet Explorer, Mozilla Firefox etc.). To call the configuration page, prefix "http://" must be entered
into the address bar of the WEB-Browser prior to entering the IP address of the PLCcore-9G20 as set

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 31

System Manual PLCcore-9G20

in section 7.2, e.g. "http://192.168.10.248". Figure 10 exemplifies calling the PLCcore-9G20
configuration page in the WEB-Browser.

The standard setting (factory setting) requires a user login to configure the PLCcore-9G20 via WEB-
Frontend. This is to prevent unauthorized access. Therefore, user name and password must be
entered (see Figure 10). On delivery of the module, the following user account is preconfigured (see
section 7.7):

User: PlcAdmin
Password: Plc123

a PLCcore-9G20 Configuration Main Page - Microsoft Internet Explorer =10 5[
File Edit Wiew Favorites Tools Help | ”

Qe - © - [x] [2] @‘pSear:h 5% Favoritas @| R i 3

selthess [] hetp:/j192.165. 10.245]

j Go | Links **
B

Connect to 192.168.10.248

Tt

This configuration setup requires an user autharization,
Default Login: User=PlcAdmin [Password=Plc123

Uset name: Iﬂ PlcAdmin j

Password: | ------ |

Start Configuration

™ Remember my password

Cancel
‘a Opening page http:/f192. 168, 10.248/cgi-bin/cfgsetup.cgi. .. ’i ’_’_’_’_’_ # Internest ~
Figure 10: User login dialog of the WEB-Frontend

All configuration adjustments for the PLCcore-9G20 are based on dialogs. They are adopted into the
file "/home/plc/plccore-9g20.cfg” of the PLCcore-9G20 by activating the pushbutton "Save
Configuration" (also compare section 7.4.3). After activating Reset (e.g. pushbutton S405 on the
Development Board), the PLCcore-9G20 starts automatically using the active configuration. Figure 11
shows the configuration of the PLCcore-9G20 via WEB-Frontend.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 32

System Manual PLCcore-9G20

3 PLCcore-9G20 Configuration - Microsoft Internet Explorer -0 5'
Fle Edit “iew Favorites Tools Help | ,?

eBack - e - @ @ ~L/lj psaarch “L[\L{Favorites @| @. & ..3

Address IE http:/f192.168.10. 248)cgi-binjcfgsetup. cgi

j Go | Links >

Interface CANO Interface CAN1

Enable State Im Enable State Im
NodelD (Hex: Ox..) fmeo NodelD (Hex: Ox..)]
Baudrate Im Baudrate Im

haster Mode v haster hode o

Interface ETHO
Port Number to

communicate with IBEBB

OpenPCS (PC)

Process Image User Authorization
IV Enable extended 1/0's IV This configuration reguires a Login
™ Share PLC process image

Save Configuration

T o

|a Done

Figure 11: PLC configuration via WEB-Frontend

If "DIP/Hex-Switch" is chosen as Enable State of Interface CANO, the configuration of this interface
takes place via local control elements of the Development Kit PLCcore-9G20 (see section 7.4.2).

The standard setting (factory setting) of the PLCcore-9G20 requires a user login to access the WEB-
Frontend. Therefore, only the user name indicated in configuration file "/home/plc/plccore-9920.cfg”
is valid (entry "User="in section "[Login]", see section 7.4.3). Procedures to modify the user login
password are described in section 7.10. To allow module configuration to another user, an appropriate
user account is to be opened as described in section 7.9. Afterwards, the new user name must be
entered into the configuration file "/home/plc/plccore-99g20.cfg”. Limiting the user login to one user
account is cancelled by deleting the entry "User="in section "[Login]" (see 7.4.3). Thus, any user
account may be used to configure the module. By deactivating control box "This configuration requires
a Login" in the field "User Authorization" of the configuration page (see Figure 11) free access to the
module configuration is made available without previous user login.

7.4.2 PLC configuration via control elements of the Development Kit PLCcore-9G20

The PLC configuration via control elements is not supported by the currently available Development
Board with the PCB version 4261.2. This feature is reserved to a later hardware version of the
Development Board.

The PLC configuration is possible either by the WEB-Frontend (see section 7.4.1) or by directly editing
the file "/home/plc/plccore-9920.cfg" (see section 7.4.3).

7.4.3 Setup of the configuration file "plccore-9g20.cfg"

The configuration file "/home/plc/plccore-9g20.cfg" allows for comprehensive configuration of the
PLCcore-9G20. Although, working in it manually does not always make sense, because most of the

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 33

System Manual PLCcore-9G20

adjustments may easily be edited via WEB-Frontend (compare section 7.4.1). The setup of the
configuration file is similar to the file format "Windows INI-File". It is divided into "[Sections]" which
include different entries "Entry=". Table 16 shows all configuration entries. Entries of section "[CANO]"
take priority over settings via control elements (see section 7.4.2).

Table 16: Configuration entries of the CFG file

Section Entry Value

Meaning

[CANO] Enabled 1,0, 1

-1: Interface CANO is activated,
configuration takes place via control
elements of the Development Board
(factory setting, see section 7.4.2)

0: Interface CANO is deactivated

1: Interface CANO is activated,
configuration takes place via entries of
the configuration file below

NodelD 1...127 or
0x01 ... OX7F

Node number for interface CANO
(decimal or hexadecimal with prefix "0x")

Baudrate 10, 20, 50, 125, 250,
500, 800, 1000

Bitrate for interface CANO

MasterMode 0,1

1: Master mode is activated

0: Master mode is deactivated

[ETHO] PortNum Default Port no:
8888

Port number for the communication with the
Programming-PC and for program download
(only for PLCcore-9G20/Z5, order number
3390025)

[Procimg] EnableExtlo 0,1

0: Only on-board I/Os of the PLCcore-9G20
are used for the process image (except
Temperature Sensor)

1: All I/Os supported by driver are used for
the process image (incl. Temperature
Sensor and external ADC of
Developmentboard)

(for adaptation of process image see section
8.2)

EnableSharing | 0, 1

0: No sharing of process image
1: Sharing of process image is enabled

(see section 8.1)

© SYS TEC electronic GmbH 2010

L-1254e_1 Page 34

System Manual PLCcore-9G20

[Login] Authorization 0,1 0: Configuration via WEB-Frontend is
possible without user login

1: Configuration via WEB-Frontend requires

user login
User Default Name: If entry "User="is available, only the user
PlcAdmin name defined is accepted for the login to

configure via WEB-Frontend.

If the entry is not available, any user
registered on the PLCcore-9G20 (see
section 7.9) may login via WEB-Frontend.

The configuration file "/home/plc/plccore-9920.cfg” includes the following factory settings:

[Login]
Authorization=1
User=PIcAdmin

[CANO]
Enabled=1
Node ID=0x20

Baudrate=125
MasterMode=1

[CAN1]
Enabled=0
Node D=0
Baudrate=0
MasterMode=0

[ETHO]
PortNum=8888

[Procimg]
EnableExtlo=1
EnableSharing=0

7.5 Boot configuration of the PLCcore-9G20

The PLCcore-9G20 is configured so that after Reset the PLC firmware starts automatically. Therefore,
all necessary commands are provided by the start script "/home/etc/autostart". Hence, the required
environment variables are set and drivers are booted.

If required, the start script "/home/etc/autostart” may be complemented by further entries. For
example, by entering command "pureftp”, the FTP server is called automatically when the PLCcore-
9G20 is booted. The script can be edited directly on the PLCcore-9G20 in the FTP client "WinSCP"
(compare section 7.1) using pushbutton "F4" or "F4 Edit".

7.6 Selecting the appropriate firmware version

The PLCcore-9G20 is delivered with different firmware versions. Those vary in the communication
protocol for the data exchange with the programming PC and they differ from each other regarding the
availability of FB communication classes (see section 6.3). The selection of the appropriate firmware
version takes place in the start script "/home/etc/autostart". By default, the "BoardID" of the module

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 35

System Manual PLCcore-9G20

as set in the bootloader "U-Boot" is analyzed. Table 17 lists up the assignments of firmware versions
and BoardIDs.

Table 17: Assignment of BoardIDs and firmware versions for the PLCcore-9G20

BoardID Firmware Version Remark

1008004 plccore-99g20-z4 PLCcore-9G20/Z24 (CANopen)
communication with the programming PC via CANopen
protocol (Interface CANO)

1008005 plccore-9g20-z5 PLCcore-9G20/Z5 (Ethernet)
communication with the programming PC via UDP protocol
(Interface ETHO)

The configuration of BoardIDs takes place via the serial interface COMO. Therefore, the "U-Boot"
command prompt must be activated as described in section 7.2. Setting BoardIDs is carried out
via the "U-Boot" command "set boardid" by entering the corresponding number listed in Table 17, e.g.:

setenv boardid 1008005

The modified setting can be verified by entering "printenv" at the "U-Boot" command prompt.
Command

saveenv

persistently saves the current selection in the Flash of the PLCcore-9G20. Figure 12 visualizes the
configuration of the BoardID.

=
File Edit Setup Control ‘Window FResize Help
-Boot 2009.11 (Jul 14 2010 - 09:22:32) j
(c1 2010 by 5¥3 TEC elctronic GubH, M 1.04
[IEAH: 32 HE
Flash: 16 HEB
In: serial
ut: zerial
Fri: serial
Hot: nachl

nachD: Starting autoneqot iation...

nachl: Autonegot iat ion conplete

nach0: link up, 100Hbps full-duples [lpa: Dxcded)
tutoboot in 1 seconds

-Boot> zeteny boardid 1003005

-Boot > saveany

aving Enwivonnant to Flash...

h-Protected 1 sectors

Evazing Flash...

. done

Frazed 1 sectors

Hriting to Flash... 9., 8., 7., 6. 6. 4. 3.2 L odone
Frotected 1 sectors

-Boot:]

[

Figure 12: Selecting the appropriate firmware version for the PLCcore-9G20

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 36

System Manual PLCcore-9G20

After completing the configuration, all preconditions for a Linux Autostart must be
reestablished according to section 7.2.

Alternatively, the appropriate firmware version may be selected directly in the start script
"/home/etc/autostart”. Therefore, delete part "Select PLC Type" and insert the appropriate firmware
instead, e.g.:

PLC_FIRMWARE=$PLC_DIR/plccore-99g20-z5

7.7 Predefined user accounts

All user accounts listed in Table 18 are predefined upon delivery of the PLCcore-9G20. Those allow
for a login to the command shell (serial RS232 connection or Telnet) and at the FTP server of the
PLCcore-9G20.

Table 18: Predefined user accounts of the PLCcore-9G20

User name Password Remark

PlcAdmin Plc123 Predefined user account for the administration of the
PLCcore-9G20 (configuration, user administration, software
updates etc.)

root Sys123 Main user account ("root") of the PLCcore-9G20

7.8 Login to the PLCcore-9G20

7.8.1 Login to the command shell

In some cases the administration of the PLCcore-9G20 requires the entry of Linux commands in the
command shell. Therefore, the user must be directly logged in at the module. There are two different
possibilities:

e Logging in is possible with the help of a Terminal program (e.g. HyperTerminal or TeraTerm, see
section 7.1) via the serial interface COMO of the PLCcore-9G20 — analog to the procedure
described for the Ethernet configuration in section 7.2. For the configuration of the terminal
settings pay attention to only use "CR" (carriage return) as end-of-line character. Login with
user name and password is not possible for "CR+LF" (carriage return + line feed)!

o Alternatively, the login is possible using a Telnet client (e.g. Telnet or also TeraTerm) via the
Ethernet interface ETHO of the PLCcore-9G20.

For logging in to the PLCcore-9G20 via the Windows standard Telnet client, the command "telnet"
must be called by using the IP address provided in section 7.2, e.g.

telnet 192.168.10.248

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 37

System Manual PLCcore-9G20

Run 2l x|

= Type the name of a program, folder, document, or
Intermet resource, and Windows will open it For wou,

Qpen: Itelnet 192, 165,10, 243] =]

Ok I Cancel | Browse. .. |

Figure 13: Calling the Telnet client in Windows

Logging in to the PLCcore-9G20 is possible in the Terminal window (if connected via COMO) or in the
Telnet window (if connected via ETHO). The following user account is preconfigured for the
administration of the module upon delivery of the PLCcore-9G20 (also compare section 7.7):

User: PlcAdmin
Password: Plc123

¢t Telnet 192.168.10.248

PLCcore—9G20_192_.168.18_.248 login: FlcAdmin
Password:

=h—3_2:"% _

Figure 14: Login to the PLCcore-9G20

Figure 14 exemplifies the login to the PLCcore-9G20 using a Windows standard Telnet client.

7.8.2 Login to the FTP server

The PLCcore-9G20 has available a FTP server (FTP Daemon) that allows file exchange with any
computer (up- and download of files). Due to security and performance reasons, the FTP server is
deactivated by default and must be started manually if required. Therefore, the user must first be
logged in to the command shell of the PLCcore-9G20 following the procedures described in section
7.8.1. Afterwards, the following command must be entered in the Telnet or Terminal window:

pureftp

Figure 15 illustrates an example for starting the FTP server.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 38

System Manual PLCcore-9G20

et Telnet 192.168.10.248

PLCcore—9G20_192.168.10.248 login: PlcAdmin
Password:
sh-3.2:™ _

Figure 15: Starting the FTP server

Advice: By entering command "pureftp” in the start script "/home/etc/autostart”, the FTP server
may be called automatically upon boot of the PLCcore-9G20 (see section 7.5).

"WIinSCP" - which is available as open source - would be suitable as FTP client for the computer (see
section 7.1). It consists of only one EXE file, needs no installation and may be started immediately.
After program start, dialog "WinSCP Login" appears (see Figure 16) and must be adjusted according
to the following configurations:

File protocol: FTP
Host name: IP address for the PLCcore-9G20 as set in section 7.3
User name: PlcAdmin (for predefined user account, see section 7.7)
Password: Plc123 (for predefined user account, see section 7.7)

S_essic-n Sesgion

“ Stored sessions Host name: Port number:

Errvironment |

: 192.168.10.248 21

“ Directoriez I I =l

Preferences Uszer name: Paszword:

|Plcédmin [eesaed

Erivate keyfile:

| 1

Pratocot

File pratocol; FTP * | lhzecure

Select color |
[~ Advanced options
About... Languages Login I Save... | Cloze |

Figure 16: Login settings for WinSCP

After using pushbutton "Login", the FTP client logs in to the PLCcore-9G20 and lists up the active
content of directory "/home" in the right window. Figure 17 shows FTP client "WinSCP" after
successful login to the PLCcore-9G20.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 39

System Manual PLCcore-9G20

T3 PLCcore-9G20 - PlcAdmin@192. 168.10.248 - WinSCP ~=lolx|

Local Mark Files Commands Session Cptions Remote Help

0D B |mP | Detauk -
< Tt HardDisk & iE - iz i home |zl GGl [2) | B
MNarme Ext Size | Type Changed attr | Mame = Ext Size | Changed Rights Owner |
). Parent direckary 7f12/2010 1:17:31 &M ¢).
ﬂ;install-plccure-9g20-04.‘. 384,932 SHFile 462010 2:39:32 AM ca Jetc 12/5/2009 12:16 AM rwxr-xr-x 1000
Lhttp L2/5/2009 12:16 AM rwxr-xr-x 1000
plc 12/5/2009 12:20 M rwxr-xr-x 1000
E install.sh 2,084 6/9/2010 1:04 PM rwer-xr-x 1000
Q profile 2,044 12/5/2009 12:13 AM rnasr-xr-x roob
OB of 375 Kilt in 0 of 1 OB of 4128 B in0of &

& FZ Rename _:? F4 Edit _=§ F5 Copy 5 F&Mave [F7 Create Directory < FB Delete 21 F9 Properties L FI0 Quik

FTF 0:08:13 4

Figure 17: FTP client for Windows "WinSCP"

After successful login, configuration files on the PLCcore-9G20 may be edited by using pushbuttons
"F4" or "F4 Edit" within the FTP client "WIinSCP" (select transfer mode "Text"). With the help of
pushbutton "F5" or "F5 Copy", files may be transferred between the computer and the PLCcore-9G20,
e.g. for data backups of the PLCcore-9G20 or to transfer installation files for firmware updates (select
transfer mode "Binary").

7.9 Adding and deleting user accounts

Adding and deleting user accounts requires the login to the PLCcore-9G20 as described in section
7.8.1.

Adding a new user account takes place via Linux command "adduser". In embedded systems such as
the PLCcore-9G20, it does not make sense to open a directory for every user. Hence, parameter "-H"
disables the opening of new directories. By using parameter "-h /home" instead, the given directory
"lhome" is rather assigned to the new user. To open a new user account on the PLCcore-9G20, Linux
command "adduser" is to be used as follows:

adduser -h /home -H -G <group> <username>

Figure 18 exemplifies adding a new account on the PLCcore-9G20 for user "admin2".

et Telnet 192.168.10.248

PLCcore—9G20_192.168.10.248 login: PlcAidmin
Password:

=h—-3.2:"#f adduser -h ~home —-H -G users admin2
Changing password for admin2

Mew password:

Retype password:

Password for admin2 changed by root
=h—-3.2:"H _

Figure 18: Adding a new user account

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 40

System Manual PLCcore-9G20

Advice: If the new user account shall be used to access WEB-Frontend, the user name
must be entered into the configuration file "plccore-9g20.cfg" (for details about
logging in to WEB-Frontend please compare section 7.4.1 and 7.4.3).

To delete an existing user account from the PLCcore-9G20, Linux command "deluser” plus the
respective user name must be used:

deluser <username>

7.10 How to change the password for user accounts

Changing the password for user accounts requires login to the PLCcore-9G20 as described in section
7.8.1.

To change the password for an existing user account on the PLCcore-9G20, Linux command
"passwd" plus the respective user name must be entered:

passwd <username>

Figure 19 exemplifies the password change for user "PIcAdmin".

et Telnet 192.168.10.248

PLCcore—9G20_192.168.10.248 login: PlcAdmin
Password:

sh—3.2:™# passwd PlcAdmin

Changing password for PlcAdmin

Hew password:

Retype password:

Password for PlcAdmin changed hy root
sh-3.2:™ _

Figure 19: Changing the password for an user account

7.11 Setting the system time

Setting the system time requires login to the PLCcore-9G20 as described in section 7.8.1.

There are two steps for setting the system time of the PLCcore-9G20. At first, the current date and
time must be set using Linux command "date". Afterwards, by using Linux command "hwclock -w" the
system time is taken over into RTC module of the PLCcore-9G20.

Linux command "date" is structured as follows:

date [options] [YYYY.JMM.DD-hh:mm[:ss]

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 41

System Manual PLCcore-9G20

Example:

date 2010.02.25-11:34:55

[I I I I
l | | +--- Second
| +————- Minute
| +-—-——----- Hour

To set the system time of the PLCcore-9G20 to 2010/02/25 and 11:34:55 (as shown in the example
above), the following commands are necessary:

date 2010.02.25-11:34:55
hwclock -w

The current system time is displayed by entering Linux command "date" (without parameter). The
Linux command "hwclock -r* can be used to recall current values from the RTC. By using "hwclock -s",
the current values of the RTC are taken over as system time for Linux (synchronizing the kernel with
the RTC). Figure 20 exemplifies setting and displaying the system time.

¢t Telnet 192.168.10.248

PLCcore—9G28_192.168_.18.248 login: PlcAdmin
Password:

=h—3.2:"# date 2010.82 _25-11:34:55

Thu Febh 25 11:34:55 UTC 2818

=h—3.2:"Hf huclock —u

=h—3.2:"}

=h—3.2:"Hf date

Thu Febh 25 11:35:1% UTC 2818

=h—3.2:"#f huclock —»

Thu Febh 25 11:35:23 2810 0.80080A zeconds

sh-3.2:™# _

Figure 20: Setting and displaying the system time

Upon start of the PLCcore-9G20, date and time are taken over from the RTC and set as current
system time of the module. Therefore, Linux command "hwclock -s" is necessary which is included in
start script "/etc/init.d/hwclock".

7.12 File system of the PLCcore-9G20

The Embedded Linux which is pre-installed on PLCcore-9G20 provides most of the on-board memory
as flash disk. The JFFS2 is used as file system. It is a well-known system in the embedded field and
was specifically developed as data carrier for the usage of flash modules. The on-board flash of
PLCcore-9G20 is separated into two independent JFFS2 partitions. The first partition contains the
Linux kernel and the Root file system. The second partition is completely mounted as directory
"lhome". There is a complete read and write access for both partitions.

The partition mounted to the path "/home" is used to store all files modifiable and updatable by the
user, e.g. configuration files, PLC firmware and PLC program files that have been loaded onto the
module. Directory "/tmp" is appropriately sized to function as temporary buffer for FTP downloads of
firmware archives for PLC software updates (see section 7.13.1).

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 42

System Manual PLCcore-9G20

Table 19: File system configuration of the PLCcore-9G20

Path Size Description

/home 4096 kByte Flash disk to permanently store files modifiable and updatable by
the user (e.g. configuration files, PLC firmware, PLC program),
data preservation in case of power breakdown

Itmp 8192 kByte RAM disk, suitable as intermediate buffer for FTP downloads,
but no data preservation in case of power breakdown

/var 1024 kByte RAM disk which is used by the system to store temporary files,
no data preservation in case of power breakdown

/mnt Target for integrating remote directories, it is not part of the
PLCcore-9G20 standard functionality

Sizes of file system paths that are configured or still available can be identified by using the Linux
command "df" ("DiskFree") — see Figure 21.

et Telnet 192.168.10.248

PLCcore—9G20_192.168.10.248 login: PlcAdmin
Password:

1824-blocks Used Available Usex Mounted on
11776 71688 4676 6 s
256 256 % Adeu

8192 8188 w Stmp
1824 » Suvarslog
256 ¥ Suarsrun

256 » Suarslock
4076 ¥ <home

Figure 21: Display of information about the file system

Particular information about the system login and handling the Linux command shell of the PLCcore-
9G20 is given attention in section 7.8.

7.13 Software update of the PLCcore-9G20

All necessary firmware components to run the PLCcore-9G20 are already installed on the module
upon delivery. Hence, firmware updates should only be required in exceptional cases, e.g. to input
new software that includes new functionality.

7.13.1 Updating the PLC firmware

PLC firmware indicates the run time environment of the PLC. PLC firmware can only be generated
and modified by the producer; it is not identical with the PLC user program which is created by the
PLC user. The PLC user program is directly transferred from the OpenPCS programming environment
onto the module. No additional software is needed.

Updating the PLC firmware requires login to the command shell of the PLCcore-9G20 as described in
section 7.8.1 and login to the FTP server as described in section 7.8.2.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 43

System Manual PLCcore-9G20

Updating the PLC firmware takes place via a self-extracting firmware archive that is transferred onto
the PLCcore-9G20 via FTP. After starting the FTP server on the PLCcore-9G20 (command "pureftp”,
see section 7.8.2), the respective firmware archive can be transferred into directory "/tmp" of the
PLCcore-9G20 (see Figure 22).

T3 PLCcore-9G20 - PlcAdmin@192.168.10.248 - WinSCP =10l]

e T2 HardDisk @ ie - - iR G [| e Itmp S ie - - (EE A (2|
Mame = Ext Size | Twpe Changed attr | Mame = Ext Size | Changed Rights Qwner
= e PaEME i, 7J12[2010 111731 AM

@Einstall-plccore-9g20-04...(384,932)H File H/6/2010 2:39:32 AM ca | install-plccore-9g20-0... 384,932 RI25/2010 11:43 AM rw-r--r-- rook
"

0B of 375 KB in 0 af 1 0B of 375 KB in 0 af 1
& F2Rename | § F4Edit 23 F5 Copy 3 Fé Move [F7 Create Directory < F8 Delete 2 F9 Properties W1 F10 Quit

=) FTR _j_il 0z3s .

Figure 22: File transfer in FTP client "WinSCP"

Important: To transfer the firmware archive via FTP, transfer type "Binary" must be chosen. If FTP
client "WinSCP" is used, the appropriate transfer mode is to be chosen from the menu
bar. After downloading the firmware archive, it must be checked if the file transferred to
the PLCcore-9G20 has the exact same size as the original file on the computer (compare
Figure 22). Any differences in that would indicate a mistaken transfer mode (e.g. "Text").
In that case the transfer must be repeated using transfer type "Binary".

After downloading the self-extracting archive, the PLC firmware must be installed on the PLCcore-
9G20. Therefore, the following commands are to be entered in the Telnet window. It must be
considered that the file name for the firmware archive is labeled with a version identifier (e.g. "install-

plccore-99g20-0412_0100.sh" for version 4.12.01.00). This number must be adjusted when commands
are entered:

cd /tmp
chmod +x install-plccore-9g20-0412_0100.sh
-/install-plccore-99g20-0412_0100.sh

Advice: The command shell of the PLCcore-9G20 is able to automatically complete names if the
Tab key is used ("tab completion"). Hence, it should be sufficient to enter the first letters
of each file name and the system will complement it automatically. For example, "./ins" is
completed to "./install-plccore-9g20-0412_0100.sh" if the Tab key is used.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 44

System Manual PLCcore-9G20

elnet 192.168.10.248

PLCcore—9G28_192.168_.18.248 login: PlcAdmin

Password:

sh-3.2:"# pureftp

sh-3.2:"# cd Atmp

sh-3.2:/7tmp#t chmod +x .~ install-plccore—2920-8412 HiBHA.sh
sh-3.2:7tmpHt .~install-plccore-7920-B412_HiBAA.sh

—— PLCcore—7G2A Runtime System Installer ——

Checking PLCcore—9G28 harduware for update requirements...
Extract new I-0 driver *_/plcspcP9g28drv_ko' to tmp div...
AplespcPg28dre . ko

Try to load new 1/0 driver...

PLCcore—9G28 hardware check ok.

Running installation... please wait

.setc/s

setc/autostart
setc/rc.usp

~http~

.~http/mime.types
.“httpshoa.conf
.httpscgi-hins
httpscgi-—-hinscfgsetup.cfg
httpscgi-—hinscfgsetup.cgi
.~http-html/
~httpshtmls/systec_logo.jpg
~httpshtml/index.html
http-html-Pc?G2AConfig.html
http html PLCcore—9G20.gif
.#install.sh

sples

.splcsuersion
plesiodredemo
Aplescandry . ko
Aplesplecore—P928—z5
.“plesstopple
AplespePg2Bdre ko
splespePg2Bdro . so
splesrunplc
.splesshpingdemo
plespleccore—Fg2B—z4
Aplesplecore—9928.cfy

Installation has bheen finished.
Please restart system to activate the new firmuware.

sh—3.2:/tmpit _

Figure 23: Installing PLC firmware on the PLCcore-9G20

Figure 23 exemplifies the installation of PLC firmware on the PLCcore-9G20. After Reset the module
is started using the updated firmware.

Advice: If the PLC firmware is updated, the configuration file "/home/plc/plccore-9920.cfg"
is overwritten. This results in a reset of the PLC configuration to default settings.
Consequently, after an update, the configuration described in section 7.4 should be
checked and if necessary it should be reset.

7.13.2 How to update the Linux-Image

Updating the Linux-lmage takes place via TFTP (Trivial FTP) within Linux bootloader "U-Boot".
Therefore, an appropriate TFTP server is necessary on the computer, e.g. freeware "TFTPD32"
(compare section 7.1). The program consists of only one EXE file that requires no installation and can
be run immediately. After the program start, an appropriate working directory ("Current Directory")
should be created by clicking on pushbutton "Browse" (e.g. "C:\PLCcore-9G20"). The Linux-Image for
the PLCcore-9G20 must be located in this directory ("root.sum.jffs2").

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 45

System Manual PLCcore-9G20

= Titpd3Z by Ph. Jounin -0 x|
Current Directory | C:\PLCcore-9520 |
Server interfaces |192.1EB.1D.59 j Show Dir |
Tftp Server | Tftp Client I DHCP zerver I Syzlog server I Log viewer
peer | file | start time | progress
1] | 2l
Ahbout | Settings I Help I

Figure 24: TFTP server for Windows "TFTPD32"

A TFTP download of the Linux-Image requires that the Ethernet configuration of the PLCcore-9G20
is completed according to procedures describes in section 7.3. To update the Linux-Image it is
necessary to have available another serial connection to the PLCcore-9G20 in addition to the Ethernet
connection. All configurations for the terminal program as described in section 7.2 apply

(115200 Baud, 8 Data bit, 1 Stop bit, no parity and no flow control).

Updating the Linux-Image of the PLCcore-9G20 is only possible if Linux is not running. Hence,
Linux Autostart must be disabled prior to the updating process and "U-Boot" command prompt
must be used instead. Procedures are described in section 7.2.

After Reset (e.g. pushbutton S405 on the Development Board), the "U-Boot" command prompt
answers. To update the Linux-Image the following commands must be entered according to the
following sequence:

Table 20: Command sequence to update the Linux-Image on the PLCcore-9G20

Command Meaning

setenv serverip <host_ip_addr> Setting the IP address of the TFTP server.
If "TFTPD32" is used, the address is shown in field
"Server Interface" on the PC.

tftp root.sum.jffs2 Downloading the Linux-Image from the Development PC
onto the PLCcore-9G20

erase nor0,3 Erase the Flash area, needed by Linux-Image

cp.b ${fileaddr} 0x10480000 ${filesize} Saving the Linux-Image in the Flash of the PLCcore-
9G20

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 46

System Manual PLCcore-9G20

W ComMi:115200baud - Tera Term ¥T -0l x|

File Edit Setup Contral “Window Fesize Help

-Boot 2009.11 (Jul 14 2010 - 09:22:32) j
(c1 2010 by 5¥3 TEC elctronic GubH, M 1.04

[IEAH: 32 HE

Flash: 16 HEB

In: sarial

ut: zerial

Frr: sorial

Het: nachl

Hachll: Starting autonegot iat ion...

nachll: Autonegot iat ion conplate

nach0: link up, 100Mbps full-duplex [lpa: Owcded)

autoboot in 1 seconds

-Boot> zeteny serverip 192.168.10.59

-Boot> tftp root.sun. jffsl

nach0: Link up, 100Hbps full-duples [lpa: Dxcdell

zing nachll device

TFTP fron zerver 192.168.10.59; our IP address iz 192.168.10.248
Filenane “root.sun. jffs?’.

Load addvezs: 0x20000000

Loading:

done

Bytes transferred = 7217024 (6elf80 hax)

-Boot> eraze norl,3

Evaze Flash Parition nor0,3, bank 0, 0x10430000 - D=10fff§ff

Frazed 9% sectors

-Boot» cp.b 5{f ileaddr} 0x10430000 5{filesizet

opy to Flash... 9. 8. 7. 6B 430 2L done
-Boot>]

Figure 25: Downloading the Linux-Image to the PLCcore-9G20

After completing the configuration, conditions for a Linux Autostart must be reestablished
according to instructions in section 7.2.

After Reset is activated (e.g. pushbutton S405 on the Development Board), the PLCcore-9G20 starts
automatically using the current Linux-Image.

Advice: After the configuration is finished, the serial connection between the computer and the
PLCcore-9G20 is no longer necessary.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 47

System Manual PLCcore-9G20

8 Adaption of In-/Outputs and Process Image

8.1 Data exchange via shared process image

8.1.1 Overview of the shared process image

The PLCcore-9G20 is based on the operating system Embedded Linux. Thus, it is possible to execute
other user-specific programs simultaneously to running the PLC firmware. The PLC program and a
user-specific C/C++ application can exchange data by using the same process image (shared process
image). Implementing user-specific C/C++ applications is based on the Software package SO-1105
("VMware-Image of the Linux development system for the ECUcore-9G20").

IEC 61131-3/ PLC System User C/C++ Application

|
|
|
|
Application : Application
. | L
PLC Runtime System | User C/C++ Application
: int main (int nArgCnt_p, char* apszArg_p[])
. . | (
PLC Application ! BYTE* pbvart;
PROGRAM Progl | BYTE bAnyData = 0x55;
|
Local Image VAR ! | . /rgetaddress of variable in shared image
__ _} VarlATMB1280:BYTE; _| | _ _ _ - “ 7 _Jt— pbvarl= shPimgCintGetDataSect()
P END_VAR ‘ Ve + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs
[eut .] | 7 +128; 11 <--- Offs. for '%MB128.0
,/ IF (Varl = 16#55) THEN | /
outplit (* Do any thing ... *) | / Il 'setup read and write sector table
- — v T~ END_IF; | // ShPImgCIntSetupReadSectTable(...);
Varl AT %MB128.0 : BYTE; ! | ShPImgClntSetupWriteSectTable(...);
Marker END_PROGRAM : !
| \ Il 'access to variable in shared image
| \\ *pbVarl = bAnyData;
! \
| N }
| S -
@ (3), (5 | ~ o ! shpimgclient.c
| - -
® ‘ ..
Shared Library (so) | N)
/
Shared Image N , shmclient.c
pc9g20drv.so — J N /
~ ,
< v
~ \-
ReadSectTable P
T o |
ReadProclmage = WriteSectTable ‘
I
A } L
7
A /
rWriteProcImage {wopot 1 //
7/
7
|Output o _____ - |
Varl AT %MB128.0 : BYTE; ==
Marker

Kernel Object (ko)

Proclmage Exchange Cycle:
(1) Read Local Inputs

\ L pc9g20drv.ko

1/0 Access

(2) Write Shared to Local

A (3) Read Local to Shared

[Run PLC Cycle]

(4) Write Shared to Local

(5) Read Local to Shared
Hardware

(6) Write Local Outputs

Figure 26: Overview of the shared process image

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 48

System Manual PLCcore-9G20

Not all variables are utilizable via the shared process image within a C/C++ application. Only those
directly addressed variables that the PLC program generates within the process image. As shown in
Figure 26, two separate process images are used for the data exchange with an external application
inside of the PLC runtime system. This is necessary to meet the IEC 61131-3 requirement that the
initial PLC process image may not be modified during the entire execution of one PLC program cycle.
Thereby, the PLC program always operates with the internal process image that is locally generated
within the PLC runtime system ("Local Image" in Figure 26). This is integrated within the PLC runtime
system and is protected against direct accesses from the outside. On the contrary, the user-specific,
external C/C++ application always uses the shared process image ("Shared Image" in Figure 26). This
separation of two process images enables isolation between accesses to the PLC program and the
external application. Those two in parallel and independently running processes now must only be
synchronized for a short period of time to copy the process data.

An activation of option "Share PLC process image" within the PLC configuration enables data
exchange with external applications (see section 7.4.1). Alternatively, entry "EnableSharing=" can
directly be set within section "[Procimg]" of the configuration file "/home/plc/plccore-9g20.cfg" (see
section 7.4.3). The appropriate configuration setting is evaluated upon start of the PLC firmware. By
activating option "Share PLC process image", the PLC firmware creates a second process image as
Shared Memory ("Shared Image" in Figure 26). Its task is to exchange data with external applications.
Hereby, the PLC firmware functions as Server and the external, user-specific C/C++ application
functions as Client.

ReadSectorTable and WriteSectorTable both control the copying of data between the two process
images. Both tables are filled by the Client (external, user-specific C/C++ application) and are
executed by Server (PLC runtime system). The Client defines ranges of the PLC process image from
which it will read data (ReadSectorTable) or in which it will write data (WriteSectorTable). Hence, the
terms "Read" and "Write" refer to data tranfer directions from the viewpoint of the Client.

Sections to read and write may comprise all sections of the entire process image — input, output as
well as marker sections. This allows for example that a Client application writes data into the input
section of the PLC process image and reads data from the output section. Figure 26 shows the
sequence of single read and write operations. Prior to the execution of a PLC program cycle, the
physical inputs are imported into the local process image of the PLC (1). Afterwards, all sections
defined in WriteSectorTable are taken over from the shared process image into the local process
image (2). By following this sequence, a Client application for example is able to overwrite the value of
a physical input. This may be used for simulation purposes as well as for setting input data to constant
values ("Forcen"). Similarly, prior to writing the process image onto the physical outputs (6), sections
defined in WriteSectorTable are taken over from the shared process image into the local process
image. (4). Thus, a Client application is able to overwrite output information generated by the PLC
program.

The PLC firmware provides the setup of the process image. The Client application receives
information about the setup of the process image via function ShPImgCintSetup(). This function
enters start offsets and values of the input, output and marker sections into the structure of type
tShPImgLayoutDscrpt. Function ShPImgCIntGetDataSect() provides the start address of the shared
process image. Upon defining a variable within the PLC program, its absolute position within the
process image is determined through sections (%l = Input, %Q = Output, %M = Marker) and offset
(e.g. %MB128.0). In each section the offset starts at zero, so that for example creating a new variable
in the marker section would be independent of values in the input and output section. Creating a
corresponding pair of variables in the PLC program as well as in the C/C++ application allows for
data exchange between the PLC program and the external application. Therefore, both sides must
refer to the same address. Structure tShPImgLayoutDscrpt reflects the physical setup of the process
image in the PLC firmware including input, output and marker sections. This is to use an addressing
procedure for defining appropriate variables in the C/C++ application that is comparable to the PLC
program. Hence, also in the C/C++ program a variable is defined in the shared process image by
indicating the respective section and its offset. The following example illustrates the creation of a
corresponding variable pair in the PLC program and C/C++ application:

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 49

System Manual PLCcore-9G20

PLC Program

VAR T

BYTE* pbvarl; Tl
Varl AT MB128.0 : BYTE; RN
END_VAR AN pbvarl = ShPImgCIntGetDataSect() T
R R + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs
S~ + 128; // <--- Offset for "%MB128.0"

As described above, ReadSectorTable and WriteSectorTable manage the copy process to
exchange variable contents between the PLC and the C/C++ program. Following the example
illustrated, the Client (C/C++ application) must enter an appropriate value into the WriteSectorTable to
transfer the value of a variable from the C/C++ application to the PLC program (WriteSectorTable,
because the Client “writes” the variable to the Server):

// specify offset and size of "Varl®" and define sync type (always or on demand?)
WriteSectTab[0].m uiPImgDataSectOffs ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 128;
WriteSectTab[0]-m_uiPImgDataSectSize sizeof(BYTE);

WriteSectTab[0].-m_SyncType kShPImgSyncOnDemand;

// define the WriteSectorTable with the size of 1 entry
ShPImgCIntSetupWriteSectTable (WriteSectTab, 1);

If several variable pairs are generated within the same transfer direction for the data exchange
between the PLC program and the C/C++ application, they should possibly all be defined in one
coherent address range. Thus, it is possible to list them as one entry in the appropriate SectorTable.
The address of the first variable must be set as the SectorOffset and the sum of the variable sizes as
SectorSize. Combining the variables improves the efficiency and the performance of the copy
processes.

For each entry of the WriteSectorTable an appropriate SyncType must be defined. It determines
whether the section is generally taken over from the shared process image into the local image
whenever there are two successive PLC cycles (kShPImgSyncAlways) or whether it is taken over on
demand (kShPImgSyncOnDemand). If classified as SyncOnDemand, the data only is copied if the
respective section before was explicitly marked as updated. This takes places by calling function
ShPImgCintWriteSectMarkNewData() and entering the corresponding WriteSectorTable-Index (e.g.
0 for WriteSectTabl[0] etc.).

kShPImgSyncAlways is provided as SyncType for the ReadSectorTable (the value of the member
element m_SyncType is ignored). The PLC firmware is not able to identify which variables were
changed by the PLC program of the cycle before. Hence, all sections defined in ReadSectorTable are
always taken over from the local image into the shared process image. Thus, the respective variables
in the shared process image always hold the actual values.

The PLC firmware and the C/C++ application both use the shared process image. To prevent conflicts
due to accesses from both of those in parallel running processes at the same time, the shared process
image is internally protected by a semaphore. If one process requires access to the shared process
image, this process enters a critical section by setting the semaphore first and receiving exclusive
access to the shared process image second. If the other process requires access to the shared
process image at the same time, it also must enter a critical section by trying to set the semaphore. In
this case, the operating system identifies that the shared process image is already being used. It
blocks the second process until the first process leaves the critical section and releases the
semaphore. Thereby, the operating system assures that only one of the two in parallel running
processes (PLC runtime system and C/C++ application) may enter the critical section and receives
access to the shared process image. To ensure that both processes do not interfere with each other
too much, they should enter the critical section as less as possible and only as long as necessary.
Otherwise, the PLC cycle time may be extended and runtime variations (Jitter) may occur.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 50

System Manual PLCcore-9G20

The client application has available two functions to set the semaphore and to block exclusive access
to the shared process image. Function ShPImgCIntLockSegment() is necessary to enter the critical
section and function ShPImgCIntUnlockSegment() to leave it. The segment between both functions
is called protected section, because in this segment the client application holds access to the shared
process image without competition. The consistency of read or written data is only guaranteed within
such a protected section. Outside the protected section, the shared process image may anytime be
manipulated by the PLC runtime system. The following example shows the exclusive access to the
shared process image in the C/C++ application:

ShPImgCIntLockSegment();
{

// write new data value into Varl
*pbVarl = bAnyData;

// mark new data for WriteSectorTable entry number O
ShPImgCIntWriteSectMarkNewData (0);

}
ShPImgCIntUnlockSegment();

For the example above, kShPImgSyncOnDemand was defined as SyncType upon generating entry
WriteSectorTable. Hence, taking over variable Varl from the shared process image into the local
image can only take place if the respective section was beforehand explicitly marked as updated.
Therefore, it is necessary to call function ShPImgCintWriteSectMarkNewData(). Since function
ShPImgCintWriteSectMarkNewData() does not modify the semaphore, it may only be used within a
protected section (see example) — such as the code section between ShPImgCintLockSegment() and
ShPImgCintUnlockSegment().

The synchronization between local image and shared process image by the PLC runtime system only
takes place in-between two successive PLC cycles. A client application (user-specific C/C++ program)
is not directly informed about this point of time, but it can get information about the update of the
shared process image from the PLC runtime system. Therefore, the client application must define a
callback handler of the type tShPImgAppNewDataSigHandler, e.g.:

static void AppSigHandlerNewData (void)

fNewDataSignaled_I = TRUE;
b

This callback handler must be registered with the help of function
ShPImgClntSetNewDataSigHandler(). The handler is selected subsequent to a synchronization of
the two images.

The callback handler of the client application is called within the context of a Linux signal
handler (the PLC runtime system informs the client using Linux function kill()). Accordingly, all
common restrictions for the Linux signal handler also apply to the callback handler of the client
application. In particular, it is only allowed to call a few operating system functions that are explicitly
marked as reentrant-proof. Please pay attention to not make reentrant calls of local functions within
the client application. As shown in the example, only a global flag should be set for the signaling within
the callback handler. This flag will later on be evaluated and processed in the main loop of the client
application.

8.1.2 API of the shared process image client

As illustrated in Figure 26, the user-specific C/C++ application exclusively uses the API (Application
Programming Interface) provided by the shared process image client. This APl is declared in the

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 51

System Manual PLCcore-9G20

header file shpimgclient.h and implemented in the source file shpimgclient.c. It contains the following
types (partly defined in shpimg.h) and functions:

Structure tShPImgLayoutDscrpt

typedef struct

{
// definition of process image sections
unsigned int m_uiPImglnputOffs; // start offset of input section
unsigned int m_uiPImglnputSize; // size of input section
unsigned int m_uiPImgOutputOffs; // start offset of output section
unsigned int m_uiPImgOutputSize; // size of output section
unsigned int m_uiPImgMarkerOffs; // start offset of marker section
unsigned int m_uiPImgMarkerSize; // size of marker section

} tShPImglLayoutDscrpt;

Structure tShPImgLayoutDscrpt describes the setup of the process image given by the PLC
firmware. The client application receives the information about the setup of the process image via
function ShPImgClintSetup(). This function enters start offsets and values of input, output and marker
sections into the structure provided upon function calling.

Structure tShPImgSectDscrpt

typedef struct

// definition of data exchange section

unsigned int m_uiPImgDataSectOffs;

unsigned int m_uiPImgDataSectSize;

tShPImgSyncType m_SyncType; // only used for WriteSectTab
BOOL m_fNewData;

} tShPImgSectDscrpt;

Structure tShPImgSectDscrpt describes the setup of a ReadSectorTable or WriteSectorTable entry
that must be defined by the client. Both tables support the synchronization between the local image of
the PLC runtime system and the shared process image (see section 8.1.1). Member element
m_uiPImgDataSectOffs defines the absolute start offset of the section within the shared process
images. The respective start offsets of the input, output and marker sections can be determined
through structure tShPImgLayoutDscrpt. Member element m_uiPImgDataSectSize determines the
size of the section which may include one or more variables. Member element m_SyncType only
applies to entries of the WriteSectorTable. It determines whether the section is generally taken over
from the shared process image into the local image whenever there are two successive PLC cycles
(kShPImgSyncAlways) or whether it is taken over on demand (kShPImgSyncOnDemand). If
classified as SyncOnDemand, the data must be marked as modified by calling function
ShPImgCintWriteSectMarkNewData(). It sets the member element m_fNewData to TRUE. The client
application should never directly modify this member element.

Function ShPImqgClintSetup

BOOL ShPImgCIntSetup (tShPImgLayoutDscrpt* pShPImgLayoutDscrpt_p);

Function ShPImgCIntSetup() initializes the shared process image client and connects itself
with the storage segment for the shared process image which is generated by the PLC runtime
system. Afterwards, it enters the start offsets and values of the input, output and marker
sections into the structure of type tShPImgLayoutDscrpt provided upon function call. Hence, the

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 52

System Manual PLCcore-9G20

client application receives notice about the process image setup managed by the PLC firmware.

If the PLC runtime system is not active when the function is called or if it has not generated a
shared process image (option "Share PLC process image" in the PLC configuration deactivated,
see section 8.1.1), the function will return with the return value FALSE. If the initialization was
successful, the return value will be TRUE.

Function ShPImqgClntRelease

BOOL ShPImgCIntRelease (void);

Function ShPImgCIntRelease() shuts down the shared process image client and disconnects
the connection to the storage segment generated for the shared process image by the PLC
runtime system.

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntSetNewDataSigHandler

BOOL ShPImgCIntSetNewDataSigHandler (
tShPImgAppNewDataSigHandler pfnShPImgAppNewDataSigHandler_p);

Function ShPImgCIntSetNewDataSigHandler() registers a user-specific callback handler. This
callback handler is called after a synchronization of both images. Registered callback handlers
are cleared by the parameter NULL.

The callback handler is called within the context of a Linux signal handler. Accordingly, all
common restrictions for the Linux signal handler also apply to the callback handler (see
section 8.1.1).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntGetHeader

tShPImgHeader* ShPImgCIntGetHeader (void);

Function ShPImgCIntGetHeader() provides a pointer to the internally used structure type
tShPImgHeader to manage the shared process image. The client application does usually not
need this structure, because all data that it includes can be read and written through functions
of the API provided by the shared process image client.

Function ShPImgClntGetDataSect

BYTE* ShPImgCIntGetDataSect (void);

Function ShPImgCIntGetDataSect() provides a pointer to the beginning of the shared process
image. This pointer represents the basic address for all accesses to the shared process image;
including the definition of sections ReadSectorTable and WriteSectorTable (see section 8.1.1).

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 53

System Manual PLCcore-9G20

Functions ShPImgClntLockSegment and ShPImgCintUnlockSegment

BOOL ShPImgCIntLockSegment (void);
BOOL ShPImgCIntUnlockSegment (void);

To exclusively access the shared process image, the client application has available two
functions - function ShPImgCintLockSegment() to enter the critical section and function
ShPImgCintUnlockSegment() to leave it. The segment between both functions is called
protected section, because in this segment the client application holds unrivaled access to the
shared process image (see section 8.1.1). The consistency of read or written data is only
guaranteed within such a protected section. Outside the protected section, the shared process
image may anytime be manipulated by the PLC runtime system. To ensure that the client
application does not interfere with the PLC runtime system too much, the critical sections should
be set as less as possible and only as long as necessary. Otherwise, the PLC cycle time may
be extended and runtime variations (Jitter) may occur.

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImqgClintSetupReadSectTable

BOOL ShPImgCIntSetupReadSectTable (
tShPImgSectDscrpt* paShPImgReadSectTab_p,
unsigned int uiNumOfReadDscrptUsed p);

Function ShPImgCIntSetupReadSectTable() initializes the ReadSectorTable with the values
defined by the client. The client hereby determines those sections of the PLC process image
from which it wants to read data (see section 8.1.1). Parameter paShPImgReadSectTab_p
holds elements of the structure tShPImgSectDscrpt and must be transferred as start address of
a section. Parameter uiNumOfReadDscrptUsed_p indicates how many elements the section
has.

kShPImgSyncAlways is provided as SyncType for the ReadSectorTable.

The maximum amount of possible elements for the ReadSectorTable is defined by the constant
SHPIMG_READ_SECT_TAB_ENTRIES and can only be modified if the shared library
"pc9g20drv.so" is generated again and at the time (this requires SO-1106 - "Driver
Development Kit for the ECUcore-9G20", see section 8.2).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgCintSetupWriteSectTable

BOOL ShPImgCIntSetupWriteSectTable (
tShPImgSectDscrpt* paShPImgWriteSectTab_p,
unsigned int uiNumOfWriteDscrptUsed_p);

Function ShPImgCIntSetupWriteSectTable() initializes the WriteSectorTable with the values
defined by the client. The client hereby determines those sections of the PLC process image
from which it wants to write data (see section 8.1.1). Parameter paShPImgWriteSectTab_p
holds elements of structure tShPImgSectDscrpt and must be transferred as start address of a
section. Parameter uiNumOfWriteDscrptUsed_p indicates how many elements the section has.

For each entry in the WriteSectorTable the SyncType must be defined. This SyncType defines
whether the section is always taken over into the local image between two PLC cycles
(kShPImgSyncAlways) or only on demand (kShPImgSyncOnDemand). If taken over on
demand, the respective section is explicitly marked as updated by calling

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 54

System Manual PLCcore-9G20

ShPImgClIntWriteSectMarkNewData().

The maximum amount of possible elements for the WriteSectorTable is defined by the constant
SHPIMG_WRITE_SECT_TAB_ENTRIES and can only be modified if the shared library
"pc9g20drv.so" is generated again and at the same time (this requires SO-1106 - "Driver
Development Kit for the ECUcore-9G20", see section 8.2).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntWriteSectMarkNewData

BOOL ShPImgCIntWriteSectMarkNewData (unsigned int uiWriteDscrptldx_p);

For the content of a section that is held by the WriteSectorTable, function
ShPImgCintWriteSectMarkNewData() marks this content as modified. This function is used
(for sections with SyncType kShPImgSyncOnDemand) to initiate the copy process of data
from the shared process image into the local image of the PLC.

Function ShPImgCIntWriteSectMarkNewData() directly accesses the header of the shared
process image without setting a semaphore before. Hence, it may only be used within the
protected section — in the code section between ShPImgCintLockSegment() and
ShPImgClntUnlockSegment().

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

8.1.3 Creating a user-specific client application

Software package SO-1105 ("VMware image of the Linux development system") is the
precondition for the implementation of user-specific C/C++ applications. It contains a complete Linux
development system in the form of a VMware image. Hence, it allows for an easy introduction into the
C/C++ software development for the PLCcore-9G20. Thus, the VMware image is the ideal basis to
develop Linux-based user programs on the same host PC that already has the OpenPCS IEC 61131
programming system installed on it. The VMware image of the Linux development system includes the
GNU-Crosscompiler Toolchain for ARM9 processors. Additionally, it includes essential server services
that are preconfigured and usable for effective software development. Details about the VMware
image of the Linux development system and instructions for its usage are described in the "System
Manual ECUcore-9G20" (Manual no: L-1253).

As illustrated in Figure 26, the user-specific C/C++ application uses the API (files shpimgclient.c and
shpimgclient.h) which is provided by the shared process image client. The shared process image
client is based on services provided by the shared memory client (files shmclient.c and shmclient.c).
Both client implementations are necessary to generate a user-specific C/C++ application. The archive
of the shared process image demos (shpimgdemo.tar.gz) contains the respective files. To create
own user-specific client applications, it is recommended to use this demo project as the basis for own
adaptations and extensions. Moreover, this demo project contains a Makefile with all relevant
configuration adjustments that are necessary to create a Linux application for the PLCcore-9G20.
Table 21 lists all files of the archive "shpimgdemo.tar.gz" and classifies those as general part of the
C/C++ application or as specific component for the demo project "shpimgdemao".

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 55

System Manual PLCcore-9G20

Table 21: Content of the archive files "shpimgdemo.tar.gz"

File Necessary for all C/C++ In particular for demo
applications "shpimgdemo"

shpimgclient.c X

shpimgclient.h X

shmclient.c X

shmclient.h X

shpimg.h X

global.h X

Makefile draft, to be adjusted

shpimgdemo.c X

trmio.c X

trmio.h X

trace.c X

The archive file "shpimgdemo.tar.gz" including the shared process image demo must be unzipped
into any subdirectory following the path "/projects/ECUcore-9G20/user" within the Linux development
system. Therefore, command "tar" must be called:

tar xzvf shpimgdemo.tar.gz

During the unzipping process, command "tar" independently generates the subdirectory
"shpimgdemo". For example, if the command is called in directory "/projects/ECUcore-9G20/user”, all
archive files will be unzipped into the path "/projects/ECUcore-9G20/user/shpimgdemo"”. Figure 27
exemplifies the unzipping process of "shpimgdemo.tar.gz" within the Linux development system.

e Terminal oo
Fie Edit View Terminal Go Help

vmware@vm-xubuntu:~$ cd /projects/ECUcore-9620/user
vmware@vm-xubuntu:/projects/ECUcore-9G20/users tar xzvf shpimgdemo.tar.gz
./shpimgdemo/

./shpimgdemo/Makefile

./shpimgdemo/trmio.c

./shpimgdemo/trace.c

./shpimgdemo/shpimg.h

./shpimgdemo/shpimgclient.c
./shpimgdemo/shmclient.c

./shpimgdemo/shmclient.h

./shpimgdemo/global . h

./shpimgdemo/shpimgclient.h

./shpimgdemo/trmio.h
./shpimgdemo/shpimgdemo.c
vmware@vm-xubuntu:/projects/ECUcore-9620/users [

Figure 27: Unzipping the archive files shpimgdemo.tar.gz in the Linux development system

After unzipping and switching into subdirectory "shpimgdema", the demo project can be created by
calling command "make":

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 56

System Manual PLCcore-9G20

cd shpimgdemo
make

Figure 28 shows how the demo project "shpimgdemo" is generated in the Linux development system.

Terminal

Fie Edit View Terminal Go Help

./shpimgdemo/shpimgclient.h 2
./shpimgdemo/Lrmio.h

./shpimgdemo/shpimgdemo.c

vmware@vm-xubuntu:/projects/ECUcore-9620/users$ cd shpimgdemo
vmware@vm-xubuntu:/projects/ECUcore-9620/user/shpimgdemos make

Make Settings
CFLAGS = '-00 -g -Wall -march=armvite -mcpu=arm%26ej-s -mtune=arm9tdmi -mscf
t-float -I. -DNDEBUG'
LDFLAGS = '-march=armv5te -mcpu=arm926ej-s -mtune=arm9tdmi -msoft-float'
LDLIBS = '
Compiling 'shpimgdemo.c'. ..
ing 'shpimgclient.c'...
g 'shmclient.c'...
'trmio.c' ...
'trace.c'...
hpimgdema ' . . .
Stripping 'shpimgdemo’...
Done.

Copy executeable 'shpimgdemo’ to destination '/tftpboot': done.

vmware@vm-xubuntu:/prajects/EClUcore-9G20/user/shpimgdemos I

Figure 28: Generating the demo project "shpimgdemo" in the Linux development system

Section 8.1.4 describes the usage and handling of the demo project "shpimgdemo" on the PLCcore-
9G20.

8.1.4 Example for using the shared process image

The demo project "shpimgdemo" (described in section 8.1.3) in connection with the PLC program
example "RunLight" both exemplify the data exchange between a PLC program and a user-specific
C/C++ application.

Technical background

The PLC program generates some variables in the process image as directly addressable variables. In
a C/C++ application, all those variables are usable via the shared process image. For the PLC
program example "RunLight" those are the following variables:

(* variables for local control via on-board 1/0s *)

bButtonGroup AT %IB0O.O - BYTE;
iAnalogValue AT %IW8.0 : INT;
bLEDGroupO AT %QBO.0 : BYTE;

(* variables for remote control via shared process image ¥*)

uiRemoteSlidbarLen AT %MW512.0 : UINT; (* out: length of slidebar *)
bRemoteStatus AT %MB514.0 : BYTE; (* out: BitO: RemoteControl=on/off *)
bRemoteDirCtrl AT %MB515.0 : BYTE; (* in: direction left/right *)
iRemoteSpeedCtrl AT %MW516.0 : INT; (* in: speed *)

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 57

System Manual PLCcore-9G20

Variables of the PLC program are accessible from a C/C++ application via the shared process image.
Therefore, sections must be generated for the ReadSectorTable and WriteSectorTable on the one
hand and on the other hand, pointers must be defined for accessing the variables. The following
program extract shows this using the example "shpimgdemo.c". Function ShPImgCintSetup() inserts
the start offsets of input, output and marker sections into the structure ShPImgLayoutDscrpt. Hence,
on the basis of the initial address provided by ShPImgCintGetDataSect(), the absolute initial
addresses of each section in the shared process image can be determined. To identify the address of
a variable, the variable’s offset within the particular section must be added. For example, the absolute
address to access the variable "bRemoteDirCtrl AT %MB515.0 : BYTE;" results from the sum of the
initial address of the shared process image (pabShPImgDataSect), the start offset of the marker
section (ShPImgLayoutDscrpt.m_uiPImgMarkerOffs fir "%M...") as well as the direct address within
the marker section which was defined in the PLC program (515 for "%MB515.0"):

pbPImgVar_61131_bDirCtrl = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515);

The following code extract shows the complete definition of all variables in the demo project used for
exchanging data with the PLC program:

// —--- Setup shared process image client ——--
fRes = ShPImgCIntSetup (&ShPImgLayoutDscrpt);
if ('fRes)

printf (""\n*** ERROR *** Init of shared process image client failed);

pabShPImgDataSect = ShPImgCIntGetDataSect();

// ---- Read Sector Table ----
// Input Section: bButtonGroup AT %IB0.0
{

ShPImgReadSectTab[0] .m_uiPImgDataSectOffs =
ShPImgLayoutDscrpt.m_uiPImglnputOffs + O;

ShPImgReadSectTab[0] .m_uiPImgDataSectSize = sizeof(BYTE);

ShPImgReadSectTab[0] -m_SyncType kShPImgSyncAlways;

pbPImgVar_61131_bButtonGroup = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImglnputOffs + 0);

}
// Output Section: bLEDGroupO AT %QBO.0O
// bLEDGroupl AT %QB1.0
{
ShPImgReadSectTab[1]-m_uiPImgDataSectOffs =
ShPImgLayoutDscrpt.m_uiPImgOutputOffs + O;
ShPImgReadSectTab[1] -m_uiPImgDataSectSize = sizeof(BYTE) + sizeof(BYTE);
ShPImgReadSectTab[1]-m_SyncType = kShPImgSyncAlways;
pbPImgVar_61131_bLEDGroupO = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgOutputOffs + 0);
pbPImgVar_ 61131 bLEDGroupl = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgOutputOffs + 1);
}

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 58

System Manual PLCcore-9G20

// Marker Section: uiSlidbarLen AT %MW512.0
// bStatus AT %MB514.0

ShPImgReadSectTab[2] .m_uiPImgDataSectOffs =
ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 512;

ShPImgReadSectTab[2].m_uiPImgDataSectSize = sizeof(unsigned short int)
+ sizeof(BYTE);
ShPImgReadSectTab[2] .-m_SyncType = kShPImgSyncAlways;

pbPImgVar_61131_usiSlidbarLen = (unsigned short int*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 512);
pbPImgVar_61131_bStatus = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 514);

}

fRes = ShPImgCIntSetupReadSectTable (ShPImgReadSectTab, 3);
if (I'fRes)

printf (""\n*** ERROR *** Initialization of read sector table failed");

}

// —-—- Write Sector Table ---—-

// Marker Section: bDirCtrl AT %MB513.0

// iSpeedCtrl AT %MB514.0

{
ShPImgWriteSectTab[0].-m_uiPImgDataSectOffs =

ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515;

ShPImgWriteSectTab[0].-m_uiPImgDataSectSize = sizeof(BYTE) + sizeof(WORD);
ShPImgWriteSectTab[0].m_SyncType kShPImgSyncOnDemand;

pbPImgVar_61131_bDirCtrl = (BYTE*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515);
psiPImgVar_61131_iSpeedCtrl = (short int*) (pabShPImgDataSect
+ ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 516);
}

fRes = ShPImgCIntSetupWriteSectTable (ShPImgWriteSectTab, 1);
if ('fRes)
{

}

printf (""\n*** ERROR *** Initialization of write sector table failed™);

Realization on the PLCcore-9G20

To enable the execution of the shared process image demo without previous introduction into the
Linux-based C/C++ programming for the PLCcore-9G20, the module comes with a preinstalled,
translated and ready-to-run program version and PLC firmware ("/home/plc/shpimgdemo”). The
following description refers to this program version. Alternatively, the demo project can be newly-
generated from the corresponding source files (see section 8.1.3) and can be started afterwards.
The following steps are necessary to run the shared process image demo on the PLCcore-9G20:

1. Activate option "Share PLC process image" in the PLC configuration (see sections 8.1.1, 7.4.1
and 7.4.3).

2. Open the PLC program example "RunLight” in the OpenPCS IEC 61131 programming system und
build the project for a target hardware of the type "SYSTEC - PLCcore-9G20".

3. Select the network connection to the PLCcore-9G20 und download the program.
4. Start the PLC program on the PLCcore-9G20.

5. Login to the command shell of the PLCcore-9G20 as described in section 7.8.1.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 59

System Manual PLCcore-9G20

Switch to the directory "/home/plc" and call the demo program "shpimgdemo":

cd /home/plc
./shpimgdemo

The digital outputs of the PLCcore-9G20 are selected as runlight. The speed is modifiable via the
analog input AlO (Poti at the ADC of the Development Board). With the help of pushbuttons S400
(D10) and S401 (DI1), the running direction can be changed. After starting the demo program
"shpimgdemo" on the PLCcore-9G20, actual status information about the runlight is indicated
cyclically in the terminal (see Figure 29).

e+ Telnet 192.168.10.248

PLCcore—9G28_192_.168.18.248 login: PlcAdmin
Password:

z=h—-3.2:"# cd ~homesplc

sh-3.2:"/plcH .- shpimgdemo

Shared Process Image demo application for S¥STEC PLCcore—7GZH
Uersionz 1.
{c) 2089-2818 S¥S8 TEC electronic GmbH. www.systec—electronic.com

image client...
layout:
15}

pShPImgHeader = Bx48821888
pabShPImgDataSect = Bx48021138
Register signal handler...
Setup read and write sector table...
Pointer to process image vaiables:
pbPImgUar_61131_bButtonGroup
phPImgUar_61131_bhLEDGroupB
pbPImgUar_61131_bLEDGroupl
phPImglar_61131_usiSlidbarLen
pbhPImgUar_61131_hStatus
phPImgUar_61131_hDirCterl
psiPImgUar_61131_iSpeedCtrl
Run program cycle (exchange proces

Bx480821138
Bx40021938
Bx48821939
Bx40022338
Bx48822330
Bx40822338
Bx4882233C
image>. ..

Qoo

SET START PARAMETER: Dir=Left. Speed=80

S lidebhar<8>: -

AL

Figure 29: Terminal outputs of the demo program "shpimgdemo" after start

By pressing pushbutton S403 (DI3), the control of the runlight direction and speed is handed over
to the demo program "shpimgdema". Afterwards, the running direction may be set by the C
application by using the cursor pushbuttons left and right (<« und —) in the terminal window and
the speed may be changed by using cursor pushbuttons up and down (1 und |).

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 60

System Manual PLCcore-9G20

e+ Telnet 192.168.10.248

pShPImgHeadel = Bx4068218068
pabShPIngDataSect = Bx48021138

Register signal handler...

Setup read and write sector tahle...

Pointer to process image vaiables:
phPImgUar_61131_hButtonGroup = Bx48021138
pbPImgUar_61131_bLEDGroupB = Bx4686821938
phPImgUar_61131_ bhLEDGroupl = Bx4882193%
pbPImgUar_61131_usiflidbarLen = Bx48022338
phPImgUar_61131_hStatus = Bx48822330
phPImglar_61131_hDirCtrl = Bx4882233B
psiPImgVar_61131_iSpeedCtrl = Bx4882233C

Run program cycle (exchange process imagel...

SET START PARAMETER: Dir=LePt. Speed=0
S lidebar<8>: I s T

ButtonGroup=0x88
RemoteControl = enabled
ButtonGroup=0x80

B lidebar(8)>:

SET MEW PARAMETER: Dir=Left. Speed=1
S lidebar<8>: s

SET MEYW PARAMETER: DiP=Left, Speed=2
B lidebar(8>: il

SET MEYW PARAMETER: Dir=LePt. Speed=3
S lidebar<8>: s

SET MEW PRRRHETER D1P=Left, Speed=4
B lidebar(8>: -

SET MEW PARAMETER: Dir=Left. Speed=5
Slidebar<8>: L

Figure 30: Terminal outputs of the demo program "shpimgdemo" after user inputs

Figure 30 shows the terminal outputs of the demo program "shpimgdemo" in answer to activating
the cursor pushbuttons.

The demo program "shpimgdemo" may be terminated by pressing "Ctrl+C" in the terminal window.

8.2 Driver Development Kit (DDK) for the PLCcore-9G20

The Driver Development Kit (DDK) for the ECUcore-9G20 (resp. PLCcore-9G20) is distributed as
additional software package with the order number SO-1106. It is not included in the delivery of
the PLCcore-9G20 or the Development Kit PLCcore-9G20. The "Software Manual Driver
Development Kit for the ECUcore-9G20" (Manual no.: L-1257) provides details about the DDK.

The Driver Development Kit for the ECUcore-9G20 (resp. PLCcore-9G20) enables the user to adapt
an /0O level to self-developed baseboards. The Embedded Linux on the PLCcore-9G20 supports
dynamic loading of drivers during runtime. Hence, it allows for a separation of the PLC runtime system
and /O drivers. Consequently, the user is able to completely adapt the 1/O driver to own requirements
— without having to modify the PLC runtime system.

By using the DDK, the following resources may be integrated into the I/O level:

- Periphery (usually GPIO) of the AT91SAM9G20

- on-board FPGA (Lattice ECP2-6)

- Address- /Data Bus (memory-mapped periphery)

- SPI-Bus and I°C-Bus

- All other resources provided by the operating system, e.g. file system and TCP/IP

Figure 31 provides an overview of the DDK structure and its components. The DDK contains the
FPGA software sources (VHDL) as well as the source code of the Linux kernel driver (pc9g20drv.ko)
and the Linux user library (pc9g20drv.so). Additionally, the DDK includes a PLD Programming Tool
(pldtool + plddrv.ko) which allows for a FPGA software update without extra JTAG hardware.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 61

System Manual PLCcore-9G20

Userspace / Applikationen

VME
PLC Runtime System — Fil
(plccore-9g20-2x) User C/C++ Application ile
C Source Code
T
: File System ~—— _
- ! - 1/O Driver Shared PLD Programming Tool
Userspace Library Process (pldtool)
" T f— (pc9g20drv.so) Image
. TCPIP - —~—
o |
C Source Code
Kernelspace
SPI Driver 12C Driver 1/O Driver PLD Programming Driver
(Part of the (Part of the Kernel Module (plddrv.ko)
LinuxBSP) LinuxBSP) (pc9g20drv.ko)
Hardware f VHDL

ADC

ADS7822 TMP101 GPIO

Figure 31: Overview of the Driver Development Kit for the PLCcore-9G20

Scope of delivery / components of the DDK:

The DDK contains the following components:

1.

VHDL project for the FPGA; comprises all files necessary to regenerate FPGA software (VHLS
source files, pin assignment, timing settings, project file etc.)

Source code for the Linux kernel driver (pc9g20drv.ko, see Figure 31); includes all files necessary
to regenerate kernel drivers (C and H files, Make file etc.)

Source code for the Linux user library (pc9g20drv.so, see Figure 31); contains all files (incl.
implementation of Shared Process Image) necessary to regenerate a user library (C and H files,
Make file etc.)

PLD/FPGA Programming Tool (pldtool + plddrv.ko); enables a FPGA software update using Linux
without additional JTAG hardware

I/O driver demo application (iodrvdemo) in the source code; allows for a quick and trouble-free test
of the 1/O drivers

Documentation

The Driver Development Kit is based on the software package SO-1105 ("VMware-Image of the Linux
development system"). It contains sources of the LinuxBSP used and it includes the necessary GNU-
Crosscompiler Toolchain for ARM9 processors.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 62

System Manual PLCcore-9G20

8.3 Testing the hardware connections

The PLCcore-9G20 primarily is designed as vendor part for the application in industrial controls.
Hence, the PLCcore-9G20 typically is integrated in a user-specific baseboard. To enable trouble-free
inspection of correct I/O activation, the test program "iodrvdemo" is installed on the module together
with the PLC firmware. This test program is directly tied in with the 1/O driver and allows quick and
direct access to the periphery.

At first, if a PLC runtime system is running, it must be quit. This is to ensure that the test program
"iodrvdemo" receives exclusive access to all /0 resources. To do so, script "stopplc" may possibly be
called:

cd /home/plc
-/stopplc

Afterwards, the 1/O driver may be reloaded and the test program "iodrvdemo” may be started:

insmod pc9g20drv.ko
-/iodrvdemo

Figure 32 exemplifies the testing of the hardware connections using "iodrvdemo".

e+ Telnet 192.168.10.248

PLCcore—9G20_192_168_.10_.248 login: PlcAdmin
Password:
—3.2 cd shome~/plc
sh—-3.2:"/plcl . stopp
Killing PLC runtil

Unload CAN driver done.
sh—3.2:"/plcH# insmod pcPg2B@drv.ko
zh—3.2:"plcHt .- iodrvdemo

Test application for SYSTEC PLCcore-92G28 board driver
Uersion: 1.
{c)» 2009-2010 SYS TEC electronic GmbH, www._systec—electronic.com

e T T e P T S T S S T S T S S R S S
I-0 Driver version: KernelModule=1.88, UserLib=1.88

Hardware: CPU Board: 4258.88 C(HELH>
CPU FPGA: 1.84 CHAGHD>
10 Board: 4261 .82 (HB2H>

I0 config: Digital In:
Digital Qut: 8
Analog In: 3
fAnalog Qut: @
Counter: 4
PUM-PTO: 4
TempSensor: 1

Driver: Config: B868aH

FPGA interrupt selftest: successful

Please Select:

B — Exit this application

— Run Basic I-0 test {(digital I~0 and user switches)>
- Counter test

PUHM test <(pre—configured demo>
PUM test {(manual parameter inputl
PTO test {pre—configured demol
PTO test ¢(manual parameter inputl
ADC test

EEPROM test

Temperature Sensor test

Process Image test

1
2
3
4
5
6
7
8
T
Iy
Se

[N N T I R

=== Basic I-0 Test ===
Start basic I-0 main loop... {press ESC to ahort?

DI =BxFA—-BxB0—-0x00 DBA=AxAB-AxAB-BxA1 bDipSwitch=BxA0 R-/8/M-Buwitch
DI =BxFA—-BxB0—-0x00 ! bDipSwitch=0x00 R+/8/M—Buitch
DI =BxFA—-BxB0—-0x00 DB=0AxAB-AxAB—-AxA4 bHexSwitch=8x2 bDipSwitch=BxA0 R/8/M-8Buwitch =
DT =AxFA-BxAA—-BxA0 DA=AxAR-AxAA-AxA8 bHexSwitch=0x20 bDipSwitch=AxA0 R/8/M—-8Buwitch

Figure 32: Testing the hardware connections using "iodrvdemo"

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 63

System Manual PLCcore-9G20

Appendix A: Firmware function scope of PLCcore-9G20

Table 22 lists all firmware functions and function blocks available on the PLCcore-9G20.

Sign explanation:

FB Function block

FUN Function

Online Help OpenPCS online help

L-1054 Manual "SYS TEC-specific extensions for OpenPCS / IEC 61131-3", Manual no.:
L-1054)

PARAM:={0,1,2} values 0, 1 and 2 are valid for the given parameter

Table 22: Firmware functions and function blocks of PLCcore-9G20

Name Type | Reference Remark
PLC standard Functions and Function Blocks

SR FB Online Help
RS FB Online Help
R_TRIG FB Online Help
F_TRIG FB Online Help
CTU FB Online Help
CTD FB Online Help
CTUD FB Online Help
TP FB Online Help
TON FB Online Help
TOF FB Online Help

Functions and Function Blocks for string manipulation

LEN FUN | L-1054
LEFT FUN | L-1054
RIGHT FUN | L-1054
MID FUN | L-1054
CONCAT FUN | L-1054
INSERT FUN | L-1054
DELETE FUN | L-1054
REPLACE FUN | L-1054
FIND FUN | L-1054
GETSTRINFO FB L-1054
CHR FUN | L-1054
ASC FUN | L-1054
STR FUN | L-1054
VAL FUN | L-1054

Functions and Function Blocks for OpenPCS specific task controlling

ETRC FB L-1054
PTRC FB L-1054
GETVARDATA FB Online Help
GETVARFLATADDRESS FB Online Help
GETTASKINFO FB Online Help

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 64

System Manual PLCcore-9G20

Functions and Function Blocks for handling of non-volatile data

™

NVDATA_BIT FB L-1054 DEVICE:={0}, see
NVDATA_INT FB L-1054 DEVICE:={0}, see
NVDATA_STR FB L-1054 DEVICE:={0}, see"

Functions and Function Blocks for handling of time

GetTime FUN Online Help
GetTimeCS FUN Online Help
DT_CLOCK FB L-1054
DT_ABS_TO_REL FB L-1054
DT_REL_TO_ABS FB L-1054

Functions and Function Blocks for counter inputs and pulse outputs

CNT_FUD FB L-1054 CHANNEL:={0,1,2,3}
PTO_PWM FB L-1054 CHANNEL:={0,1,2,3}
PTO_TAB FB L-1054 CHANNEL:={0,1,2,3}

Functions and Function Blocks for Serial interfaces

2)

SIO_INIT FB L-1054 PORT:={0,1,2,3}, see

SIO_STATE FB L-1054 PORT:={0,1,2,3} see ®
SIO_READ_CHR FB L-1054 PORT:={0,1,2,3} see ?
SIO_WRITE_CHR FB L-1054 PORT:={0,1,2,3} see ®
SIO_READ_STR FB L-1054 PORT:={0,1,2,3} see ?
SIO_WRITE_STR FB L-1054 PORT:={0,1,2,3} see @

Functions and Function Blocks for CAN

interfaces / CANopen

CAN_GET_LOCALNODE_ID FB L-1054 NETNUMBER:={0,1}
CAN_CANOPEN_KERNEL_STATE FB L-1054 NETNUMBER:={0,1}
CAN_REGISTER_COBID FB L-1054 NETNUMBER:={0,1}
CAN_PDO_READS8 FB L-1054 NETNUMBER:={0,1}
CAN_PDO_WRITES FB L-1054 NETNUMBER:={0,1}
CAN_SDO_READS8 FB L-1054 NETNUMBER:={0,1}
CAN_SDO_WRITES FB L-1054 NETNUMBER:={0,1}
CAN_SDO_READ_STR FB L-1054 NETNUMBER:={0,1}
CAN_SDO_WRITE_STR FB L-1054 NETNUMBER:={0,1}
CAN_GET_STATE FB L-1054 NETNUMBER:={0,1}
CAN_NMT FB L-1054 NETNUMBER:={0,1}
CAN_RECV_EMCY_DEV FB L-1054 NETNUMBER:={0,1}
CAN_RECV_EMCY FB L-1054 NETNUMBER:={0,1}
CAN_WRITE_EMCY FB L-1054 NETNUMBER:={0,1}
CAN_RECV_BOOTUP_DEV FB L-1054 NETNUMBER:={0,1}
CAN_RECV_BOOTUP FB L-1054 NETNUMBER:={0,1}
CAN_ENABLE_CYCLIC_SYNC FB L-1054 NETNUMBER:={0,1}
CAN_SEND_SYNC FB L-1054 NETNUMBER:={0,1}

© SYS TEC electronic GmbH 2010

L-1254e_1

Page 65

System Manual PLCcore-9G20

Functions and Function Blocks for Ethernet interfaces / UDP

LAN_GET_HOST_CONFIG FB L-1054 NETNUMBER:={0,1}
LAN_ASCII_TO_INET FB L-1054 NETNUMBER:={0,1}
LAN_INET_TO_ASCII FB L-1054 NETNUMBER:={0,1}
LAN_GET_HOST_BY_NAME FB L-1054 NETNUMBER:={0,1}
LAN_GET_HOST_BY_ADDR FB L-1054 NETNUMBER:={0,1}
LAN_UDP_CREATE_SOCKET FB L-1054 NETNUMBER:={0,1}
LAN_UDP_CLOSE_SOCKET FB L-1054 NETNUMBER:={0,1}
LAN_UDP_RECVFROM_STR FB L-1054 NETNUMBER:={0,1}
LAN_UDP_SENDTO_STR FB L-1054 NETNUMBER:={0,1}

@ All nonvolatile data is filed into directory "/home/plc/PlcPData.bin" on the PLCcore-9G20.

This file has a fix size of 32 kByte. By calling function blocks of type NVDATA_Xxx in a
writing mode, the modified data is directly stored into file "/home/plc/PlcPData.bin"
("flush™). Thus, unsecured data is not getting lost in case of power interruption.
@ Interface COMO (PORT:=0) primarily serves as service interface to administer the
PLCcore-9G20. Hence, this interface should only be used for sign output. The module
always tries to interpret and execute sign inputs as Linux commands (see section 6.5.1).

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 66

System Manual PLCcore-9G20

Appendix B: Reference design for the PLCcore-9G20

I/0 examples for PLCcore-9G20

GPIOs Qo RUN/ERROR-LED
- Do LED.gn X
‘ 2 [P 3 2 1 RSM-Switch
ot T3t K
" DAL LED gn
’IM FPGA 1077
FPGA 1078
Dac2 : 5A 1079
YR o
Tul >
Qu3
- FET 7002
D403
T 2 P s 2 [EPP
tLl N 470R
-
Ra18
10k Ra21
F 400 10k []Re22
L o—— 10k []Rézs
K
oA 10
FPGA 10 .
FPGAI0 400 3 ADC-Poti
FPGA 10, ‘) |
FPGA 10 Ki__ 1 -2 D- X
e L SD-Card Slot-Status
S A0
K2 1 -2 —a—
TASTEREIN —
102
i
K3 1 -2
TASTER-EIN 3v3
403
ke 1 b o ADVREF R, ?
TASTEREIN O0R
. £
State-Switches and LED's
IR406 R407
Pa02
470R 470R e W
[elNe)
s (L e §
D407 7 D408 N s
S S
SLED_gn SLED it s
Qo7 Q406 IMR 2 ~ 1
TASTEREIN
5406
FET_7002 FET_7002 1B00T e
TASTER-EIN
w w
/SHON RO, 1 meser Ry 1502
10k 10k WKUP 3 4
~ ~ 403 GND
GND
wiot
-Swi 74PHC245 s407
DIP-Switch s A 108 s —
N A B =
s R B e
NG A B =
IR408 oA IO M B4 [—
ik FPGA [013 &3) ==
oLy M B6 =
FPGA 1015 % bt] 8=
FPGA 107 3[\6 l l
IRD 19 20 DIPSW-8
6 wc RNA03
— — R420 1o Dl 0] T
V3

GND

10k

UFGN %
|

9
S

Figure 33: Reference design for I/O interface connection

© SYS TEC electronic GmbH 2010

L-1254e_1

Page 67

System Manual PLCcore-9G20

interface examples for PLCcore-9G20

1 ?(304(');'\

RS232 o™
XD 0
RXD_0
A1)
5 /
0 U300 C304 33 N
30011000 28 2 - 10 \ ‘
T o voo |5 oo ® /
caoljjwoon 1] & €302 100 DBY-F
2 g” v |22 0 X301
300 - =3 €303 1 100 #.
TXDL 7 0o 8 v e N
L T R e
xD 1
D2 1 2 127 TN T2 = T2 | TxD 1
TINS TOUTS [
301
RxDL 7 8 19 routt RN <4 RxD 0 RYD 1
RxDO 5 oo 6 187 R0 A e RxD 1 \
DRXD RPN’ 7 S RiNg | =5 RxD 2 vl o
RxD2 1 2 16 7
o< ROUT4 RING |<rf /
S e e~
GND 10\ /
33 >§<2; /INVALID DBSE
225{ JFORCEOFF
FORCEON a0
ICL3243E D 2 1
2],
R:D 2 i’
cons
i SHIELD R
GND
+2V5_EPHY
2
] /o
100n_opt
Ethernet
R307 R308
X304
OR_opt OR_opt J00-0045NL
Etho T+ 1
Eth0_TX- 2 $g
Eth0 RX+ i o
&+ ToCcT
RDCT
Eth0_RX- ol rp
NC
_|ceo7 | C308 8 | cHs GND
100n 100n GND
yellow green
A A
GND G\D S shield .
Shield
SHIELD L
[(©
5 B 5
ETH SPEED %12
270R
ETH LINK/ACT Rais
270R
X303
CAN_VCC 10 .\
CAN CAN_VCC 302 E,Q\
R301 C305 R PR : .
1k 1000 120R bl o
w301 D
CANL TxD 1 3 ~
CANL RxD 37 O Vee =7 1 80, CANHO 7
5 RXD CANHIY <3¢ 3] 4 CANLO 2
CANVCC<—+——o< REF CANL |<i2 - Sie
R300 RS GND B82789C0513N001, - :)
.
N GND 82C251TNS G\D N/Ds00 N7 D30t 1 N
/N /N GND n_g 1 X306
SURGX | SURGX — BOHRUNGL R
~ ~ DB9-M
il 1 X0
GND SHIELD R BOHRUNG2 R
AN v o 0
S | |[P1x2 S1302 c318 R322
[=YN) v
125mAIB3V onossooy /10M
GND
Figure 34: Reference design for interface circuit
© SYS TEC electronic GmbH 2010 L-1254e_1 Page 68

System Manual PLCcore-9G20

33

38 o
—awn
Ri 1(n
sl . oA
\CC USTEB
Qourter Input 1 1 6 3 1 4 Qourter toECUcae
2 | ap 7ANC2GIAGV
ap MGGV

Figure 35: Reference design for counter input connection

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 69

System Manual PLCcore-9G20

Appendix C: GNU GENERAL PUBLIC LICENSE

The Embedded Linux used on the PLCcore-9G20 is licensed under GNU General Public License,
version 2. The entire license text is specified below.

The PLC system used and the PLC and C/C++ programs developed by the user are not subject to the
GNU General Public License!

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software -- to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 70

System Manual PLCcore-9G20

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program”,
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 71

System Manual PLCcore-9G20

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of

the source code, even though third parties are not compelled to copy the source along with the object

code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 72

System Manual PLCcore-9G20

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If
the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 73

System Manual PLCcore-9G20

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it under certain conditions;
type “show c' for details.

The hypothetical commands “show w' and “show ¢' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than “show w' and
“show c'; they could even be mouse-clicks or menu items -- whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision' (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 74

System Manual PLCcore-9G20

Index
/
TNOMB ... 45
/homel/etc/autostart...........cccooeeevivvvennnnnn... 20, 38
/home/plc/plccore-9920.¢fg ...cooovvvieiiiiiieeene 35
/home/plc/PlcPData.binccccooiiieen. 69
JEMIP e 45, 47
A
ACCESSONY ..eeeiiieiiieiiiiieee et 16
= o (o [N 1T PN 43
Administration

System Requirements.............ccocccuvvvveeen.n. 30
autostart.........ccooe 20, 38
Autostart ... 20
AWL oo 9
B
Bitratecoooeeeeeee 37
Boot conditions 31
Boot configuration............cccceoiiiiiiinen, 38
C
CANO ..o 14, 24, 28
CANOPEN ...ttt 9, 27
CANoOpPEeN Chip.....cieieciiiciiiieeee e 9
CANopen Master.........cccocvveeeeeeeiiiiciiieeeee e, 9
CE conformityccooveeciiiiieiie e 5
CEG File .o 37
COM e 23
COMO .ot 14, 23
COMT oo 14, 23
COM2Z ..t 14, 23
COMB e 23
COMI ... 23
Communication FB............cccoooeiiiiiiiiiiiieiieeees 21
Communication interfaces

CAN. ... s 24

COM .. 23

ETH e 24
Configuration

Commandooociiiiii e 33

PLC . 34
Configuration Modecccccoeiiiiiiiiienee 31
Control Elements

Error-LED.............. 26

Run/Stop SWitChc.eeeviiiiiiiiiiieee 25

RUN-LEDoooiiiiiiieeeee e 25
Counter INPULSooveeeiiiiieiee e 24
D
date....oos 44
Deletion of PLC Program...........cccccccveeeennnen. 27
delUSEr.....coooiiiiieeeeeeeeas 44
Development Board

CoNNECIONS ... 14

Control Elements.........ccooeoeviiiiiiieeeieeeieen, 15
Development Kit.................oooee 13
df46
DIiMENSION c....eieeeiiee e, 8
DIP Switch 1, Positioning and Meaning........ 32
Driver Development Kit.......................... 16, 64
E
Embedded LinUX.......c..ovveeeeeiiiieeeeeeeeeeeeee 9
EMC laW...eeeeeeeeeeee e, 5
Brror-LED ... 26
ETHO oo 14, 24

PLC program examplecccccceenninennn. 24
F
File system ... 45
Firmware version

Selection.......cceeieiiiiieee e 39
FTP

Login to the PLCcore-9G20ccc........... 41
FTP Client......coooveeeiiieeeeeee e 30
FUB ... 9
G
GNU .o 12
GPL e 73
H
NWCIOCK .. 44
|
[[oYo [RY/0 =10 4 [0 JOTT T 66
J
JEF S e 45
K
KOP e 9
L
LINUX coeveceeee e 9
M
Manuals

OVEIVIEW ..o 6
Master Modecooouveeeeieeeeiieee e 37
N
Node AdAress ... 37
(0]

OpenPCS.......eeeeee e 9
P

PASSWA ... 44
PinoUt.....cooeeie 17

© SYS TEC electronic GmbH 2010

L-1254e_1 Page 75

System Manual PLCcore-9G20

PLC program example

ETHO .o 24
plccore-9920.¢cfg......cccvviieiieeeiiiieee, 35, 37
plccore-9G20.¢fguuvviiiiiieiiiiiieeeee e, 48
PlcPData.bin.......cooociiiiiieee e 69
Predefined User Accounts............ccccoeeennnen. 40
Process Image

Layout and Addressingccccccuveeeinineeenn. 22
Programmingocccoeviiieeniiee e 21
Pulse outputs.......oooociiiiiiie e 25
R
ReadSectorTable...........ccocvvevvciiieiiieeeee, 52
Reference Design.......cccccccevevvcieereiinnnn, 10, 70
root.sum.jffs2 ..., 48
RTC setting....ccooeeeieiiiieeeee e, 44
Run/Stop switch.........ccoeiiiiiii, 25
Run/Stop Switch

Deletion of PLC Program............ccccovvveeenn. 27

Encodingoeeeveeeiiii e 19
RUN-LED ...t 25
S
Selecting the firmware version 39
Setting the System Timecccceeviienenen 44
Shared Process Image

Activation ... 52

API Description ... 55

Example......ccooooeiii 60

OVEIVIEW ...t 51

(5o 1 F= 111 o [54

Variable Pairs..........ccocoiiiiii 52
ShPImgCintGetDataSect.............ccccvvvveereennnn. 56
ShPImgCintGetHeader............cocooeeiiniieeennnns 56
ShPImgCintLockSegmentccccevvveeeennee 57
ShPImgCIntReleasecocceiiviieeiiiiieeenns 56
ShPImgCintSetNewDataSigHandler 56
ShPIMGCINtSEtUP ..o 55
ShPImgCintSetupReadSectTable................. 57
ShPImgCintSetupWriteSectTable 57
ShPImgCintUnlockSegment.............cccccoeo.... 57
ShPImgClIntWriteSectMarkNewData............. 58
ShpIMQAEMOveeeeeiiiiceeee e, 58
shpimgdemo.tar.gz........cccocceeeeeeieciiiieeeeeeennn. 58

SO-1105. e 58
SO-T106....eeiieeiiiee e 64
Software Update

PLC Firmwarecccooeeeeeiiiiiieeeeeeee 46
Softwareupdate

Linux IMage.......coooiiiiiiiiieeeeeiieeeeeeeen 48
ST e s 9
StOPPIC. e 66
System Start ..o 20
T
Telnet

Login to the PLCcore-9G20cccceeeennneee 40
Telnet Client........ccccvveeeeeiicceeee e, 30
Terminal Configurationccccccveiniineeen. 32
Terminal Programcccoovieiiiiieninniieeen, 30
Testing Hardware Connections 66
TFTPD32 ...t 48
tShPImgLayoutDSCrpt.........ccccoveeeiiiiiiieeeennn. 55
tShPIMQSECtDSCIP.cceeee e 55
U
U-Boot command

BoardID configurationccccceeviieennnne 39
U-Boot Command

Update Linux Imagecccccooviiiiieennennnn. 49
U-Boot Command Prompt

Activation.........ccoeviiiii i 31

Terminal Configuration............ccccceeeeinnnne 32
U-Boot Commands

Ethernet Configurationcccccooieee 33
UdpRemoteCtrl.......c.eeeeiiiiieeiieee e, 24
USB-RS232 Adapter Cablec...ccouneeee 16
User Accounts

Adding and deletingcccocceeeiiiiiennnns 43

Changing Passwordscccccveevevnnneen. 44

Predefined........ccccooveiiiiiiie e, 40
W
WEB-Frontend ..., 34
WINSCP oo 42
WriteSectorTableccooiiiiiieiiiien 52

© SYS TEC electronic GmbH 2010

L-1254e_1 Page 76

System Manual PLCcore-9G20

Document: System Manual PLCcore-9G20
Document number: L-1254e_1, 1% Edition July 2010

How would you improve this manual?

Did you detect any mistakes in this manual? page

Submitted by:

Customer number:

Name:
Company:
Address:
Please return your SYS TEC electronic GmbH
suggestions to: August-Bebel-Str. 29
D - 07973 Greiz
GERMANY

Fax: +49 (0) 36 61 / 6279-99
Email: info@systec-electronic.com

© SYS TEC electronic GmbH 2010 L-1254e_1 Page 77

mailto:info@systec-electronic.com

	1 Introduction
	2 Overview / Where to find what?
	3 Product Description
	4 Development Kit PLCcore-9G20
	4.1 Overview
	4.2 Electric commissioning of the Development Kit PLCcore-9G20
	4.3 Control elements of the Development Kit PLCcore-9G20
	4.4 Optional accessory
	4.4.1 USB-RS232 Adapter Cable
	4.4.2 Driver Development Kit (DDK)

	5 Pinout of the PLCcore-9G20
	6 PLC Functionality of the PLCcore-9G20
	6.1 Overview
	6.2 System start of the PLCcore-9G20
	6.3 Programming the PLCcore-9G20
	6.4 Process image of the PLCcore-9G20
	6.4.1 Local In- and Outputs
	6.4.2 In- and outputs of user-specific baseboards

	6.5 Communication interfaces
	6.5.1 Serial interfaces
	6.5.2 CAN interfaces
	6.5.3 Ethernet interfaces

	6.6 Specific peripheral interfaces
	6.6.1 Counter inputs
	6.6.2 Pulse outputs

	6.7 Control and display elements
	6.7.1 Run/Stop switch
	6.7.2 Run-LED (green)
	6.7.3 Error-LED (red)

	6.8 Local deletion of a PLC program
	6.9 Using CANopen for CAN interfaces
	6.9.1 CAN interface CAN0
	6.9.2 Additional CAN interfaces

	7 Configuration and Administration of the PLCcore-9G20
	7.1 System requirements and necessary software tools
	7.2 Activation/Deactivation of Linux Autostart
	7.3 Ethernet configuration of the PLCcore-9G20
	7.4 PLC configuration of the PLCcore-9G20
	7.4.1 PLC configuration via WEB-Frontend
	7.4.2 PLC configuration via control elements of the Development Kit PLCcore-9G20
	7.4.3 Setup of the configuration file "plccore-9g20.cfg"

	7.5 Boot configuration of the PLCcore-9G20
	7.6 Selecting the appropriate firmware version
	7.7 Predefined user accounts
	7.8 Login to the PLCcore-9G20
	7.8.1 Login to the command shell
	7.8.2 Login to the FTP server

	7.9 Adding and deleting user accounts
	7.10 How to change the password for user accounts
	7.11 Setting the system time
	7.12 File system of the PLCcore-9G20
	7.13 Software update of the PLCcore-9G20
	7.13.1 Updating the PLC firmware
	7.13.2 How to update the Linux-Image

	8 Adaption of In-/Outputs and Process Image
	8.1 Data exchange via shared process image
	8.1.1 Overview of the shared process image
	8.1.2 API of the shared process image client
	8.1.3 Creating a user-specific client application
	8.1.4 Example for using the shared process image

	8.2 Driver Development Kit (DDK) for the PLCcore-9G20
	8.3 Testing the hardware connections

	Index

