

Introduction into
openPOWERLINK

Software Manual

Edition April 2008

system house for distributed automation

Introduction into openPOWERLINK

 © SYS TEC electronic GmbH 2008 L-1098e_

In this manual are descriptions for copyrighted products which are not explicitly
indicated as such. The absence of the trademark () symbol does not infer that a
product is not protected. Additionally, registered patents and trademarks are
similarly not expressly indicated in this manual

The information in this document has been carefully checked and is believed to be
entirely reliable. However, SYS TEC electronic GmbH assumes no responsibility
for any inaccuracies. SYS TEC electronic GmbH neither gives any guarantee nor
accepts any liability whatsoever for consequential damages resulting from the use
of this manual or its associated product. SYS TEC electronic GmbH reserves the
right to alter the information contained herein without prior notification and
accepts no responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH offers no guarantee nor accepts any
liability for damages arising from the improper usage or improper installation of
the hardware or software. SYS TEC electronic GmbH further reserves the right to
alter the layout and/or design of the hardware without prior notification and
accepts no liability for doing so.

 Copyright 2008 SYS TEC electronic GmbH. rights – including those of
translation, reprint, broadcast, photomechanical or similar reproduction and
storage or processing in computer systems, in whole or in part – are reserved. No
reproduction may occur without the express written consent from SYS TEC
electronic GmbH.

 EUROPE NORTH AMERICA

Address: SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW, Suite G100
Bainbridge Island, WA 98110
USA

Ordering
Information:

+49 (3661) 6279-0
info@systec-electronic.com

1 (800) 278-9913
info@phytec.com

Technical
Support:

+49 (3661) 6279-0
support@systec-electronic.com

1 (800) 278-9913
support@phytec.com

Fax: +49 (3661) 62 79 99 1 (206) 780-9135

Web Site: http://www.systec-electronic.com http://www.phytec.com

2nd Edition April 2008

Table of Contents

L-1098e_ © SYS TEC electronic GmbH 2008

1 Introduction ... 1
1.1 Ethernet POWERLINK.. 1
1.2 Key features.. 2
1.3 Software Structure.. 3
1.4 Functional Survey... 4

1.4.1 EPL API layer ... 4
1.4.2 Communication Abstraction layer................................... 4
1.4.3 Object Dictionary and Service Data Object (SDO)......... 4
1.4.4 Process Data Object (PDO)... 5
1.4.5 Managing Node... 5

2 How to integrate the EPL stack into your application 6
2.1 Configuration of the EPL stack.. 6
2.2 Initialisation of the EPL stack. ... 6
2.3 Object dictionary and process variables 8
2.4 Event callback function.. 9
2.5 Sync callback function ... 12
2.6 Starting of the EPL stack.. 13
2.7 Local object dictionary access and changing the PDO mapping14
2.8 SDO transfer... 16
2.9 Shutdown of the EPL stack .. 19

Glossary .. 20
References... 22

Introduction into openPOWERLINK

 © SYS TEC electronic GmbH 2008 L-1098e_

Index of Figures and Tables

L-1098e_ © SYS TEC electronic GmbH 2008

Introduction into openPOWERLINK

 © SYS TEC electronic GmbH 2008 L-1098e_

Introduction

L-1098e_ © SYS TEC electronic GmbH 2008 1

1 Introduction

1.1 Ethernet POWERLINK

Ethernet POWERLINK is a Real-Time Ethernet field bus system. It is
based on the Fast Ethernet Standard IEEE 802.3.

A managing node (MN), which acts as the master in the EPL network,
polls the controlled nodes (CN) cyclically. This process takes place in
the isochronous phase of the EPL cycle. Immediately after the
isochronous phase follows an asynchronous phase for communication
which is not time-critical, e.g. TCP/IP communication. The
isochronous phase starts with a Start of Cyclic frame on which all
nodes are synchronized. This schedule design avoids collisions,
which are usually present on Standard Ethernet, and ensures the
determinism of the hard real-time communication. It is implemented
in the EPL data link layer. The EPL network can be connected via
gateways to non real-time networks.

The communication profile of Ethernet POWERLINK is adapted from
CANopen. Thus the design principles like process data object (PDO)
for exchange of process variables and service data object (SDO) for
configuration of remote object dictionaries are reused. All PDOs are
exchanged within the isochronous phase similar to the synchronous
PDOs of CANopen, because event triggered PDOs would interfere
with the hard real-time requirements.

To conform to IEEE 802.3 each EPL device has got a unique MAC
address. Additionally each device is assigned a logical node ID.
Mostly, this node ID can be configured via node switches on the
device. If a particular EPL device implements a TCP/IP stack it gets a
private IP address from class C within the network 192.168.100.0
where the host part equals the EPL node ID.

It is assumed that you are familiar with the Ethernet POWERLINK
V2.0 Communication Profile Specification.

Introduction into openPOWERLINK

2 © SYS TEC electronic GmbH 2008 L-1098e_

1.2 Key features

- Data link layer and NMT state machine for Controlled and
Managing Nodes

- SDO via UDP and EPL ASnd frames
- Dynamic PDO mapping
- User-configurable object dictionary
- Supports the EPL cycle features async-only CN and

multiplexed CN
- Implemented in plain ANSI C
- Modular software structure for simple portability to different

target platforms (with and without operating system)
- Event driven Communication Abstraction Layer
- Common API to application program

Introduction

L-1098e_ © SYS TEC electronic GmbH 2008 3

1.3 Software Structure

Application

EPL API Layer

Service Data
Object

Object
Dictionary

Network
Management

of CN / MN

Communication Abstraction Layer

Common
Network

Management

Data Link Layer

Virtual
Ethernet

Driver

Process
Data Object

IP

UDP TCP

Ethernet Controller

Ethernet Driver

Error
Handler

Figure 1 Software structure

Introduction into openPOWERLINK

4 © SYS TEC electronic GmbH 2008 L-1098e_

1.4 Functional Survey

1.4.1 EPL API layer

The EPL API layer provides a simple interface to the application. The
application uses functions to initialize the EPL stack and perform
different tasks. The EPL stack informs the application via a callback
function about occurred events. For example these events include
NMT state changes, node state changes, object dictionary accesses,
finishing of SDO transfers, EPL stack errors etc.

1.4.2 Communication Abstraction layer

The EPL stack is devided into a hard-realtime task which processes
the cyclic events and a low-priority task which is responsible for
asynchronous events like SDO processing. The communication
between these tasks is encapsulated in the Communication
Abstraction Layer which is designed after the event model. This
allows easy porting and optimization to new target platforms. For
example it is possible to use the highly optimized means for
interprocess communication of the underlying operating system.

1.4.3 Object Dictionary and Service Data Object (SDO)

The configuration of the EPL stack takes place via the Object
Dictionary. This can be performed at compile time via appropriate
default entries and at run time by the application or remotely via SDO
transfers. The EPL stack supports SDO via UDP and EPL ASnd
frames. It uses an existing UDP/IP stack for SDO via UDP, e.g. the
one which may be supplied by the operating system or a stand-alone
UDP/IP stack. The virtual Ethernet driver provides means to the
UDP/IP stack for communication over the EPL network. Besides
SDO via UDP this enables also the application or other tasks like a
Web server to perform UDP or TCP communication over the EPL
network.
The application can map any variable to an object dictionary entry
(see PDO).

Introduction

L-1098e_ © SYS TEC electronic GmbH 2008 5

Depending on the concerning object entry the application is informed
about every read or write access. The application may reject the
access before it is actually performed or trigger any action.

1.4.4 Process Data Object (PDO)

The process variables are exchanged via PDOs between the nodes in
the EPL network. Therefore the application must map these variables
to object dictionary entries. The PDO mapping assigns object
dictionary entries to specified PDOs. The PDO mapping can be
changed dynamically by the application or via SDO transfers.
Ethernet POWERLINK exchanges the PDOs cyclically.

1.4.5 Managing Node

The Managing Node is enabled by setting the node ID to 240. It
performs the bootup process according to the EPL specification
version 2.0 including the support of mandatory and optional
controlled nodes.

Introduction into openPOWERLINK

6 © SYS TEC electronic GmbH 2008 L-1098e_

2 How to integrate the EPL stack into your application

The following sections introduce the utilization of the EPL stack. It is
meant to be a short introduction. For further details refer to the
Software Manual “Ethernet POWERLINK Protocol Stack”.

2.1 Configuration of the EPL stack

The functionality of the EPL stack can be configured via C-defines in
the header file EplCfg.h. Normally, this file resides in the project
directory. There are various configuration options, but the most
important ist the bit field EPL_MODULE_INTEGRATION. It defines
which modules of the EPL stack are actually included in the project.
For a standard controlled node with virtual Ethernet driver you can
use the following definition.

#define EPL_MODULE_INTEGRATION (0 \
 | EPL_MODULE_OBDK \
 | EPL_MODULE_PDOK \
 | EPL_MODULE_SDOS \
 | EPL_MODULE_SDOC \
 | EPL_MODULE_SDO_ASND \
 | EPL_MODULE_SDO_UDP \
 | EPL_MODULE_VETH \
 | EPL_MODULE_DLLK \
 | EPL_MODULE_DLLU \
 | EPL_MODULE_NMT_CN \
 | EPL_MODULE_NMT_MN \
 | EPL_MODULE_NMTU \
 | EPL_MODULE_NMTK \
)

This controlled node includes an object dictionary, PDO support,
SDO server and client, SDO via ASnd and UDP, virtual Ethernet
driver and off course the data link layer module and the generic, the
CN and the MN specific NMT modules.

2.2 Initialisation of the EPL stack.

At first it is necessary to initialize the EPL stack with several
parameters like node ID, MAC address and device identification.

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 7

Most of these initialization parameters are copied to the appropriate
object dictionary entries after resetting the object dictionary. For
example the parameter m_dwCycleLen is copied to object 0x1006.
The parameters m_uiNodeId, m_dwIpAddress, m_fAsyncOnly,
m_uiIsochrTxMaxPayload, m_uiIsochrRxMaxPayload,
m_dwAsndMaxLatency and m_dwPresMaxLatency are mandatory
and must be set to valid values. Additionally the parameter
m_abMacAddress has to be set either to {0}, if the Ethernet driver is
able to use a MAC address stored in EEPROM, or to a valid MAC
address.
If the other parameters are set to the maximum value of the data type
(i.e. -1 for unsigned integer types) the parameters are ignored and the
corresponding default values of the object dictionary are taken.
Additionally the initialization function needs the function pointers of
the application’s event and sync callback function. The latter one may
be NULL. If the initialization function encounters an error it returns a
value unequal kEplSuccessful. The following code fragment shows
the initialization of an EPL device with node ID 240, which will
operate the stack as MN.

tEplKernel EplRet;
const BYTE abMacAddr[] =
 {0x00, 0x12, 0x34, 0x56, 0x78, 0x9 A};
static tEplApiInitParam EplApiInitParam = {0};

 EplApiInitParam.m_uiSizeOfStruct =
 sizeof (EplApiInitParam);
 EPL_MEMCPY(EplApiInitParam.m_abMacAddress,
 abMacAddr,
 sizeof(EplApiInitParam.m_abMacAddres s));
 EplApiInitParam.m_uiNodeId = 240; // MN
 EplApiInitParam.m_dwIpAddress = 0xC0A86401;
 EplApiInitParam.m_uiIsochrTxMaxPayload = 100;
 EplApiInitParam.m_uiIsochrRxMaxPayload = 100;
 EplApiInitParam.m_dwPresMaxLatency = 50000;
 EplApiInitParam.m_dwAsndMaxLatency = 150000;
 EplApiInitParam.m_fAsyncOnly = FALSE;
 EplApiInitParam.m_dwFeatureFlags = -1;
 EplApiInitParam.m_dwCycleLen = 2000;
 EplApiInitParam.m_uiPreqActPayloadLimit = 36;
 EplApiInitParam.m_uiPresActPayloadLimit = 36;
 EplApiInitParam.m_uiMultiplCycleCnt = 0;
 EplApiInitParam.m_uiAsyncMtu = 1500;

Introduction into openPOWERLINK

8 © SYS TEC electronic GmbH 2008 L-1098e_

 EplApiInitParam.m_uiPrescaler = 2;
 EplApiInitParam.m_dwLossOfFrameTolerance = 5000 00;
 EplApiInitParam.m_dwAsyncSlotTimeout = 3000000;
 EplApiInitParam.m_dwWaitSocPreq = 150000;
 EplApiInitParam.m_dwDeviceType = -1;
 EplApiInitParam.m_dwVendorId = -1;
 EplApiInitParam.m_dwProductCode = -1;
 EplApiInitParam.m_dwRevisionNumber = -1;
 EplApiInitParam.m_dwSerialNumber = -1;
 EplApiInitParam.m_dwSubnetMask = 0xFFFFFF00;
 EplApiInitParam.m_dwDefaultGateway = 0;

 EplApiInitParam.m_pfnCbEvent = AppCbEvent;
 EplApiInitParam.m_pfnCbSync = AppCbSync;

 // initialize EPL stack
 EplRet = EplApiInitialize(&EplApiInitParam);
 if(EplRet != kEplSuccessful)
 {
 goto Exit;
 }

2.3 Object dictionary and process variables

Process variables from the application can be linked to the object
dictionary very easily. The header file objdict.h contains the definition
of the object dictionary. Just include the following lines in this file.
These lines create the object 0x6000 with 2 sub indexes, where the
last sub index is a user-definable unsigned 8 bit integer variable.

EPL_OBD_BEGIN_PART_DEVICE ()

 EPL_OBD_BEGIN_INDEX_RAM(0x6000, 0x02, NULL)

 EPL_OBD_SUBINDEX_RAM_VAR(

 0x6000, 0x00, 0x05, 0x01,
 tEplObdUnsigned8, number_of_entries, 0x1)

 EPL_OBD_SUBINDEX_RAM_USERDEF(

 0x6000, 0x01, 0x05, 0x0B,
 tEplObdUnsigned8, Sendb1, 0x0)

 EPL_OBD_END_INDEX(0x6000)

EPL_OBD_END_PART ()

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 9

The application declares a global variable of type BYTE (i.e.
unsigned char) and links this variable via the function
EplApiDefineObject() to the object dictionary. The following code
fragment must be insert right after the initialization of the EPL stack
(without the variable declarations).

BYTE bVarIn;
unsigned int uiVarEntries;
tEplObdSize ObdSize;

 ObdSize = sizeof(bVarIn);
 uiVarEntries = 1;
 EplRet = EplApiDefineObject(0x6000,
 &bVarIn,
 &uiVarEntries,
 &ObdSize,
 0x01,
 0);
 if (EplRet != kEplSuccessful)
 {
 goto Exit;
 }

Beside the configuration of the PDO mapping and the reaction on the
sync event as shown below, the application does not need to bother
how the process variables are exchanged with remote nodes. Even the
PDO mapping may be configured by an external configuration tool.

2.4 Event callback function

For simplicity there exits only one callback function for events from
the EPL stack (except the sync callback function which is introduced
below). The application declares a function with the following
prototype.

tEplKernel PUBLIC AppCbEvent(
 tEplApiEventType EventType_p,
 tEplApiEventArg* pEventArg_p,
 void GENERIC* pUserArg_p);

This function is called for example on the following events: NMT
state changes, node state changes, object dictionary accesses,
finishing of SDO transfers, EPL stack errors etc.

Introduction into openPOWERLINK

10 © SYS TEC electronic GmbH 2008 L-1098e_

NMT state changes are indicated by the event type
kEplApiEventNmtStateChange. An import NMT state change is the
change to kEplNmtGsOff. When this event occurs the NMT state
machine was switched off and the EPL stack can be safely shut down
(see below).

switch (EventType_p)
{
 case kEplApiEventNmtStateChange:
 {
 switch (
 pEventArg_p->m_NmtStateChange.m_NewNmtSt ate)
 {
 case kEplNmtGsOff:
 { // NMT state machine was shut down,
 // because of user signal (CTRL-C)
 // or critical EPL stack error
 // -> also shut down EplApiProcess()
 // and main()
 EplRet = kEplShutdown;

 printf("AppCbEvent(kEplNmtGsOff) "
 "originating event = 0x%X\n" ,
 pEventArg_p->m_NmtStateChang e.
 m_NmtEvent) ;

 // TODO: inform main process
 // about this event

 break;
 }

 default:
 {
 break;
 }
 }
 break;
 }

 default:
 {
 break;
 }
}

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 11

The NMT states of EPL are represented by the enumerated type
tEplNmtState. Some states require a special reaction from the
application and/or the EPL stack, but others represent only a state
where certain action may or may not be executed. Normally the
application does not need to perform any action on NMT state
changes, except on the kEplNmtGsOff state mentioned above.
Another case may be the manipulation of the local object dictionary
when NMT state kEplNmtGsResetCommunication is entered. An
example for this is the configuration of the PDO mapping (see section
2.7).

typedef enum
{
 kEplNmtGsOff = 0x0000,
 kEplNmtGsInitialising = 0x0019,
 kEplNmtGsResetApplication = 0x0029,
 kEplNmtGsResetCommunication = 0x0039,
 kEplNmtGsResetConfiguration = 0x0079,
 kEplNmtCsNotActive = 0x011C,
 kEplNmtCsPreOperational1 = 0x011D,
 kEplNmtCsStopped = 0x014D,
 kEplNmtCsPreOperational2 = 0x015D,
 kEplNmtCsReadyToOperate = 0x016D,
 kEplNmtCsOperational = 0x01FD,
 kEplNmtCsBasicEthernet = 0x011E,
 kEplNmtMsNotActive = 0x021C,
 kEplNmtMsPreOperational1 = 0x021D,
 kEplNmtMsPreOperational2 = 0x025D,
 kEplNmtMsReadyToOperate = 0x026D,
 kEplNmtMsOperational = 0x02FD,
 kEplNmtMsBasicEthernet = 0x021E

} tEplNmtState;

Constant Description
kEplNmtGsOff Generic NMT state NMT_GS_OFF.
kEplNmtGsInitialising Generic NMT state NMT_GS_INITIALISING.
kEplNmtGsResetApplication Generic NMT state

NMT_GS_RESET_APPLICATION. The
manufacturer-specific and device profile OD parts
are reset to defaults.

kEplNmtGsResetCommunic
ation

Generic NMT state
NMT_GS_RESET_COMMUNICATION. The
communication profile OD part is reset to defaults.

Introduction into openPOWERLINK

12 © SYS TEC electronic GmbH 2008 L-1098e_

Constant Description
Additionally, the OD is updated from initialization
parameters.

kEplNmtGsResetConfigurati
on

Generic NMT state
NMT_GS_RESET_CONFIGURATION. The
configuration parameters of the DLL module are
updated from OD.

kEplNmtCsNotActive CN NMT state NMT_CS_NOT_ACTIVE.
kEplNmtCsPreOperational1 CN NMT state

NMT_CS_PRE_OPERATIONAL_1.
kEplNmtCsStopped CN NMT state NMT_CS_STOPPED.
kEplNmtCsPreOperational2 CN NMT state

NMT_CS_PRE_OPERATIONAL_2.
kEplNmtCsReadyToOperate CN NMT state

NMT_CS_READY_TO_OPERATE.
kEplNmtCsOperational CN NMT state NMT_CS_OPERATIONAL.
kEplNmtCsBasicEthernet CN NMT state NMT_CS_BASIC_ETHERNET.
kEplNmtMsNotActive MN NMT state NMT_MS_NOT_ACTIVE.
kEplNmtMsPreOperational1 MN NMT state

NMT_MS_PRE_OPERATIONAL_1.
kEplNmtMsPreOperational2 MN NMT state

NMT_MS_PRE_OPERATIONAL_2.
kEplNmtMsReadyToOperate MN NMT state

NMT_MS_READY_TO_OPERATE.
kEplNmtMsOperational MN NMT state NMT_MS_OPERATIONAL.
kEplNmtMsBasicEthernet MN NMT state NMT_MS_BASIC_ETHERNET.

Table 1: Constants for enumerated type tEplNmtState

2.5 Sync callback function

The sync callback function will be called in NMT states
PREOPERATIONAL2 or above whenever the sync event occurs. On
MN this is when SoC frame is sent and on CN this is when SoC frame
is received or the reception of it is anticipated.
This function is the only place where the process variables may be
accessed safely, i.e. without interfering with the PDO processing.
Normally, the application reads the sensors and sets the actuators in
this function synchronously with all other nodes in the network.

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 13

The application shall return from this function as fast as possible. The
following code fragment demonstrates how to implement this
function. If this function returns kEplSuccessful like in this case, the
next the next TPDOs are marked valid, i.e. the flag READY will be
set. If the process variables are not yet valid, e.g. because sensors are
not ready, the application can return kEplReject.

tEplKernel PUBLIC AppCbSync(void)
{
tEplKernel EplRet = kEplSuccessful;

 // read digital inputs
 bVarIn = DIGITAL_INPUT;

 // TODO set digital outputs

 return EplRet;
}

2.6 Starting of the EPL stack

After initialization the EPL stack, i.e. the NMT state machine, needs
to be started. Upon that the EPL stack does not run, which means it
does not react on any EPL frame on the network for example.

 // start the EPL stack
 EplRet = EplApiExecNmtCommand(kEplNmtEventSwRes et);

The above code fragment will execute the NMT command Software
Reset, which starts the state machine.

Introduction into openPOWERLINK

14 © SYS TEC electronic GmbH 2008 L-1098e_

2.7 Local object dictionary access and changing the PDO
mapping

It is very easy to read entries from the local object dictionary. For
example the following code fragment will read current cycle length.

DWORD dwBuffer;
unsigned int uiSize;

 // read cycle length (32 bit variable)
 uiSize = 4;
 EplRet = EplApiReadLocalObject(0x1006,
 0x00,
 &dwBuffer,
 &uiSize);
 printf(“Cycle length = %u\n”, dwBuffer);

The function EplApiReadLocalObject() takes four arguments: object
index, sub index of the object, pointer to a buffer and pointer to the
size of the buffer. The latter one contrains the size which was actually
read, when the function has finished.
Often you want to change the PDO mapping. The following code
fragment may be placed into the event callback function in NMT state
kEplNmtGsResetCommunication. This ensures that the default
mapping is overwritten at every reset of the NMT state machine, but
the user may overwrite it again via SDO transfers. It will map object
0x6000 sub index 1 to the third byte of the PollResponse frame.

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 15

QWORD qwMapping;
BYTE bValue;

 // disable PDO,
 // i.e. set number of mapped objects to 0
 bValue = 0;
 EplRet = EplApiWriteLocalObject(0x1A00,
 0x00,
 &bValue,
 1);
 // set object mapping
 // (length of 8 bit, offset of 16 bit)
 // +------------- length in bits
 // | +--------- offset in bits
 // | | +----- sub index
 // | | | +- object index
 // _| _| | _|
 // / \/ \ /\/ \
 qwMapping = 0x0008000F00016000LL;
 EplRet = EplApiWriteLocalObject(0x1A00,
 0x01,
 &qwMapping,
 8);
 // set node ID of communication parameters
 // to 0 (PollResponse)
 bValue = 0;
 EplRet = EplApiWriteLocalObject(0x1800,
 0x01,
 &bValue,
 1);
 // set PDO version of communication parameters to 1
 bValue = 1;
 EplRet = EplApiWriteLocalObject(0x1800,
 0x02,
 &bValue,
 1);
 // enable PDO,
 // i.e. set number of mapped objects to 1
 bValue = 1;
 EplRet = EplApiWriteLocalObject(0x1A00,
 0x00,
 &bValue,
 1);

The function EplApiWriteLocalObject() takes four arguments: object
index, sub index of the object, pointer to a buffer and size of the
buffer.

Introduction into openPOWERLINK

16 © SYS TEC electronic GmbH 2008 L-1098e_

2.8 SDO transfer

With SDO transfers it is possible to access object dictionaries of
remote nodes. The current version of the EPL stack supports two
types of SDO transfers: via UDP and via EPL ASnd frames. The
functions EplApiReadObject() and EplApiWriteObject() are similar to
the functions for local object dictionary access mentioned above.
They need four additional parameters: pointer to a handle of the SDO
command layer, the ID of the remote node, the SDO transfer type and
a user-definable argument pointer. The node ID may be 0 or equal the
local node ID. Then the local object dictionary will be accessed. If
remote object dictionaries are accessed these functions will return
kEplApiTaskDeferred. This indicates that the application will be
informed via the event callback function when the task has finished.
There is another major difference to the functions for the local object
dictionary. The data in the buffer is always treated as in little endian
byte order.
The following code demonstrates a call to EplApiReadObject() to
read the cycle length from node 32. The last argument which is the
user-definable argument pointer is set to the buffer.

tEplSdoComConHdl SdoComConHdl;
unsigned int uiSize;
BYTE abSdoBuffer[4];

 uiSize = sizeof (abSdoBuffer);
 EplRet = EplApiReadObject(&SdoComConHdl,
 32,
 0x1006,
 0x00,
 abSdoBuffer,
 &uiSize,
 kEplSdoTypeAsnd,
 abSdoBuffer);
 if (EplRet == kEplApiTaskDeferred)
 { // SDO transfer started
 printf("SDO read started");
 }
 else if (EplRet == kEplSuccessful)
 { // local OD access
 printf("read from local OD\n");
 }
 else

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 17

 { // error occured
 printf("EplApiReadObject() returned 0x%02X\ n",

EplRet);
 }

The event callback function must contain the following code fragment
to catch the SDO event.

 switch (EventType_p)
 {
 case kEplApiEventSdo:
 {
 tEplSdoComFinished* pSdoComFinished =
 &pEventArg_p->m_Sdo;

 if (pSdoComFinished_p->m_SdoAccessType ==
 kEplSdoAccessTypeRead)
 {
 printf("SDO read of object ");
 }
 else
 {
 printf("SDO write of object ");
 }
 printf("0x%04X/0x%02X finished with "
 "%u bytes transfered\n",
 pSdoComFinished_p->m_uiTargetIndex,
 pSdoComFinished_p->m_uiTargetSubInd ex,
 pSdoComFinished_p->m_uiTransferedBy te);
 printf("(Abortcode: 0x%04x Handle: 0x%x "
 "State: ",
 pSdoComFinished_p->m_dwAbortCode,
 pSdoComFinished_p->m_SdoComConHdl);
 switch (
 pSdoComFinished_p->m_SdoComConState)
 {
 case kEplSdoComTransferNotActive:
 printf("Transfer not active)\n");
 break;

 case kEplSdoComTransferRunning:
 printf("Transfer is running)\n");
 break;

 case kEplSdoComTransferTxAborted:
 printf("Tx transfer aborted)\n");
 break;

Introduction into openPOWERLINK

18 © SYS TEC electronic GmbH 2008 L-1098e_

 case kEplSdoComTransferRxAborted:
 printf("Tx transfer aborted)\n");
 break;

 case kEplSdoComTransferFinished:
 printf("Transfer finished)\n");
 break;

 case kEplSdoComTransferLowerLayerAb ort:
 printf("Transfer aborted "
 "by lower layer)\n");
 break;
 }

 // Assume that we transfer always
 // numeric values,
 // if the size is less or equal 4.
 // But it can be also a VSTRING or OSTR ING
 // of that size.
 switch (
 pSdoComFinished_p->m_uiTransferedBy te)
 {
 case 0:
 printf("no Bytes transfered\n") ;
 break;

 case 1:
 printf("BYTE: 0x%02X\n",
 (WORD)AmiGetByteFromLe(
 pSdoComFinished_p->m_pUserA rg)
);
 break;

 case 2:
 printf("WORD: 0x%04X\n",
 AmiGetWordFromLe(
 pSdoComFinished_p->m_pUserA rg)
);
 break;

 case 3:
 printf("3 BYTEs: 0x%06X\n",
 AmiGetDword24FromLe(
 pSdoComFinished_p->m_pUserA rg)
);
 break;

 case 4:
 printf("DWORD: 0x%08X\n",

How to integrate the EPL stack into your application

L-1098e_ © SYS TEC electronic GmbH 2008 19

 AmiGetDwordFromLe(
 pSdoComFinished_p->m_pUserA rg)
);
 break;

 default:
 printf("TODO: dump all bytes\n")
 break;
 }
 break;
 }
 }

This example prints out all information of the SDO transfer which is
available in the event callback function.

2.9 Shutdown of the EPL stack

As mentioned above it is necessary to switch off the NMT state
machine before shutting down the EPL stack. This can be done via the
NMT command Switch off.

 EplRet =

EplApiExecNmtCommand(kEplNmtEventSwitchOff);

 // TODO: wait until NMT state machine is shut d own

 // shut down EPL stack
 EplRet = EplApiShutdown();

Introduction into openPOWERLINK

20 © SYS TEC electronic GmbH 2008 L-1098e_

 Glossary

AMI Abstract memory interface

ASnd EPL frame type: Asynchronous Send, which may contain
SDO or NMT messages

CAL Communication Abstraction Layer

CN Controlled Node, i.e. slave device in the EPL network

DCF Device configuration file (generated by configuration
tools)

DLL Data Link Layer

EPL Ethernet POWERLINK

EPSG Ethernet POWERLINK Standardization Group

HMI Human machine interface

MAC Media Access Control

MN Managing Node, i.e. master device in the EPL network

NMT Network Management

node an arbitrary EPL device. Often an EPL CN

OBD Object dictionary module

OD Object dictionary

PDO Process Data Object

PReq EPL frame type: Poll Request

PRes EPL frame type: Poll Response

RPDO Receive PDO

SDO Service Data Object

SoA EPL frame type: Start of Asynchronous

Index

L-1098e_ © SYS TEC electronic GmbH 2008

SoC EPL frame type: Start of Cyclic

TCP Transmision Control Protocol

TPDO Transmit PDO

UDP User Datagram Protocol

Introduction into openPOWERLINK

 © SYS TEC electronic GmbH 2008 L-1098e_

References

Ethernet POWERLINK V2.0 Communication Profile Specification
DS 1.0.0

L-1098 openPOWERLINK: Ethernet POWERLINK Protocol Stack
Software Manual

Index

L-1098e_ © SYS TEC electronic GmbH 2008

Index

Document: Introduction into openPOWERLINK
Document number: L-1098e_, Edition April 2008

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:

Customer number:

Name:

Company:

Address:

Return to: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY
Fax : +49 (0) 36 61 / 62 79 99

