

SO-1059

SRDO Add-on module

CANopen Source Code

Add-on for

CiA 304 Safety Framework

Software Manual

L-1077e_08

Edition September 2015

SYS TEC electronic GmbH
Am Windrad 2 08468 Heinsdorfergrund Germany

Telefon: +49 3765 38600-0 Fax: +49 3765 38600-4100
Web: www.systec-electronic.com Mail: info@systec-electronic.com

System House for Distributed Automation

mailto:info@systec-electronic.com

L-1077e_08 © SYS TEC electronic GmbH 2015

Status/Changes

Status: released

Date/Version Section Changes Editor

04.08.2015

V8

4 Added glossary D. Krüger

all Spelling and grammar, some
rewording

D. Krüger

1.6 Replaced „admission office“ by
„certification body“

D. Krüger

1 Replaced DIN EN 50325-5:2009
by EN 50325-5:2010

D. Krüger

All Replaced „Safety-relevant“ by
„Safety-related“ according to EN
50325-5:2010

D. Krüger

2.8.1.1 
2.8.2

Changed section number D. Krüger

1.1.1 Replaced “distance” by “interval" D. Krüger

2.10.2 Added note regarding
SRDO_MAX_SRDO_IN_OBD

N. Hehlke

10.09.2015

V8

1.1.1 German text translated into
English in Figure 1 and Figure 2

R. Dietzsch

2.3 German text translated into
English in Figure 6

R. Dietzsch

2.7 German text translated into
English in Figure 8

R. Dietzsch

All Replaced “normal data” by “plain
data” and replaced “inverted data”
by “bitwise inverted data”

R. Dietzsch

28.09.2015

V8

2.4 Clarified description of macro
SRDO_GRANULARITY

D. Krüger

1.2, 1.6,
2.5.3

Replace “security” by “safety” D. Krüger

- Inserted section “References” D. Krüger

1.1 Clarified description of “safe state” D. Krüger

2.5.3 Fixed and clarified description of
“safe state”

D. Krüger

L-1077e_08 © SYS TEC electronic GmbH 2015

This manual includes descriptions for copyrighted products that are not explicitly

indicated as such. The absence of the trademark () symbol does not infer that a
product is not protected. Additionally, registered patents and trademarks are similarly
not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be
entirely reliable. However, SYS TEC electronic GmbH assumes no responsibility for
any inaccuracies. SYS TEC electronic GmbH neither guarantees nor accepts any
liability whatsoever for consequential damages resulting from the use of this manual
or its associated product. SYS TEC electronic GmbH reserves the right to alter the
information contained herein without prior notification and does not accept
responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH neither guarantees nor assumes any liability
for damages arising from the improper usage or improper installation of the hardware
or software. SYS TEC electronic GmbH further reserves the right to alter the layout
and/or design of the hardware without prior notification and accepts no liability for
doing so.

 Copyright 2015 SYS TEC electronic GmbH. All rights – including those of
translation, reprint, broadcast, photomechanical or similar reproduction and storage or
processing in computer systems, in whole or in part – are reserved. No reproduction
may occur without the express written consent from
SYS TEC electronic GmbH.

contacts Direct Your local distributor

Address: SYS TEC electronic GmbH

Am Windrad 2

D-08468 Heinsdorfergrund

GERMANY

Please find a list of our distributors

under:

www.systec-electronic.com/distributors

Ordering

information:

+49 3765 / 38600-2110

info@systec-electronic.com

Technical

support:

+49 3765 / 38600-2140

support@systec-electronic.com

Fax: +49 3765 / 38600-4100

Website: http://www.systec-electronic.com

8th Edition September 2015

http://www.systec-electronic.com/distributors

List of Contents

L-1077e_08 © SYS TEC electronic GmbH 2015

References .. 1

Introduction .. 1

1 Basics “CANopen Safety” ... 2
1.1 SRDO – Safety Related Data Object ... 2

1.1.1 Communication parameters of a SRDO .. 3
1.1.2 Mapping parameter of a SRDO .. 5
1.1.3 CRC of a SRDO .. 5

1.2 Configuration Valid .. 6
1.3 Global Fail-Safe Command GFC ... 6
1.4 Predefined Connection Set .. 7
1.5 Overview safety-targeted entries in the object directory .. 8
1.6 Certification .. 9

2 Extension of the CANopen user layer .. 11
2.1 Limitations of the hardware .. 11
2.2 Limitations of the software ... 11
2.3 Software structure .. 12
2.4 Configuration of the software ... 13
2.5 Function of the SRDO module ... 15

2.5.1 Sending SRDOs ... 15
2.5.2 Receiving SRDOs ... 15
2.5.3 Sending and receipt signaling of SRDOs ... 16
2.5.4 Logical monitoring of program run of the SRDO module 16

2.6 Function of the SRDOSTC module .. 17
2.7 General program run.. 18
2.8 Extension of the CCM layer ... 19

2.8.1 Function CcmSendSrdo .. 19
2.8.2 Function CcmCheckSrdoConfig.. 21
2.8.3 Function CcmSendGfc .. 22
2.8.4 Function CcmGetSrdoState .. 23
2.8.5 Function CcmSetSrdoState .. 24
2.8.6 Function CcmGetSrdoParam .. 25
2.8.7 Function CcmStaticDefineSrdoVarFields ... 27
2.8.8 Function CcmCalcSrdoCrc ... 28

2.9 Functions in the application ... 29
2.9.1 Function AppSrdoEvent .. 29
2.9.2 Function AppSrdoError ... 31
2.9.3 Function AppGfcEvent .. 1
2.9.4 Function AppProgMonEvent ... 2
2.9.5 Function AppCbNmtEvent .. 4

2.10 Object directory .. 5
2.10.1 Macros for safety objects .. 5
2.10.2 Advice for macros ... 7

2.11 Function descriptions of the SRDO module ... 9
2.11.1 Function SrdoInit .. 9
2.11.2 Function SrdoAddInstance ... 10
2.11.3 Function SrdoDeleteInstance ... 11
2.11.4 Function SrdoNmtEvent .. 12
2.11.5 Function SrdoSend ... 13
2.11.6 Function SrdoProcess .. 14
2.11.7 Function SrdoCheckConfig ... 15
2.11.8 Function SrdoSendGfc ... 16
2.11.9 Function SrdoGetState ... 17
2.11.10 Function SrdoSetState .. 18
2.11.11 Function SrdoGetCommuParam ... 19
2.11.12 Function SrdoGetMappParam .. 20
2.11.13 Function SrdoCalcSrdoCrc ... 21

2.12 Function descriptions of the SRDOSTC module .. 22
2.12.1 Function SrdoStaticDefineVarFields ... 22

2.13 Extended CANopen Return codes ... 24

List of Contents

L-1077e_08 © SYS TEC electronic GmbH 2015

3 Reference environment TMDX570LS20SMDK ... 25
3.1 Installation of the development environment ... 25
3.2 Installation of the CANopen software... 25
3.3 Import of the safety demo in Code Composer Studio .. 26
3.4 Debugging the Demo on the hardware .. 29

4 Glossary .. 31

5 Index .. 33

List of Figures and Tables

L-1077e_08 © SYS TEC electronic GmbH 2015

Table 1: Communication parameters for the first SRDO 3

Table 2: Information Direction of a SRDO 3

Table 3: Set-up of a COB-ID for a SRDO 4

Table 4: Exemplary Mapping Table for the first SRDO 5

Table 5: Configuration Valid .. 6

Table 6: Global Fail-Safe Command GFC 6

Table 7: Extension Broadcast Predefined Connection Set 7

Table 8: Extension Peer-to-Peer Predefined Connection Set 7

Table 9: SRDO entries in the object directory 8

Figure 1: SCT principle .. 4

Figure 2: SRVT principle .. 4

Figure 3: two-channel hardware with CPU 9

Figure 4: two-channel hardware with two CPU’s 9

Figure 5: single-channel hardware with Safety-CPU 9

Figure 6: General software structure ... 12

Figure 7: Figure of variable fields ... 17

Figure 8: General program run... 18

Figure 9: Principle for sending SRDOs ... 20

Figure 10: Example of an OD with 2 SRDOs 8

References

L-1077e_08 © SYS TEC electronic GmbH 2015 1

References

/1/ EN 50325-5:2010: Industrial communications subsystem based on ISO 11898
(CAN) for controller-device interfaces – Part 5: Functional safety communication
based on EN 50325-4

/2/ CANopen User Manual, Software Manual, L-1020, SYS TEC electronic GmbH

/3/ CANopen Object Dictionary, Software Manual, L-1024, SYS TEC electronic
GmbH

/4/ CAN Driver, Software Manual, L-1023, SYS TEC electronic GmbH

Introduction

This manual is an extension of the „CANopen User Manual L-1020“ and describes the
application layer of the SRDO module.

Section 1 provides some basic terms of the Safety Framework.

Section 2 explains the implementation and describes the user functions, user
interfaces and data structures.

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 2

1 Basics “CANopen Safety”

The CiA Draft Standard Proposal 304 “CANopen Framework for Safety-Relevant
Communication” defines the CANopen Protocol extensions for the integration of
safety-related devices in CANopen networks. The protocol allows for using safety-
targeted devices and non-safety-targeted devices in one CANopen network. Safety
functions are realized via specific communication objects, the SRDOs (safety related
data objects).

With the CANopen Safety Protocol it is possible to directly connect safety-targeted
sensors and actuators. A safety-targeted control (e.g. PLC, safety monitor) is not
needed. This enables the realization of logically comparable safety chains as in usual
wired technology (e.g. the emergency power-off switch directly affects the safety
relay).

The CiA-304 standard is superseded by EN 50325-5:2010.

1.1 SRDO – Safety Related Data Object

The SRDO communication follows the producer/consumer principle. This means that
there is a SRDO producer and one or several SRDO consumers.
A SRDO consists of two CAN telegrams. The following rules apply to the generation
of a SRDO:

1. The CAN identifier of the two CAN telegrams differ at least in two bit locations.

The CAN identifier of the CAN telegram with plain data is always odd-numbered.
The CAN identifier of the CAN telegram with bitwise inverted data is always the
subsequent even value.

2. The data oft two CAN telegrams is redundant. But the data of the second CAN
telegram is inverted bit by bit.

3. A SRDO is transferred periodically whereas the interval between two SRDOs is
determined by the SCT (safeguard cycle time).

4. The interval between the two CAN telegrams of a SRDO may not exceed the
SRVT (safety related object validation time).

5. The order of the two CAN telegrams of a SRDO must be maintained. Firstly, the
actual data is transferred and secondly, the bitwise inverted data is transferred.

The receiver checks the validity of a SRDO. The time and logical sequence of the
CAN telegrams of a SRDO is compared to an expected value. Afterwards, the user
data is verified. If errors are detected, the application is in charge of switching the
associated safety function to the safe state (e.g. the associated actuator). The safe
state is to be defined in dependence from the application by the device manufacturer
and/or user.

Features of SRDOs (CAN identifier, SCT, SRVT, mapping) are stored in the object
directory and checked for validity by a CRC (16 bit cyclic redundant check).

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 3

1.1.1 Communication parameters of a SRDO

The communication parameters of a SRDO define the transmission features and the
COB-IDs of a SRDO.

The communication parameters of a SRDO are entries in the object directory (Index
0x1301 – 0x1340). They can be read and - if allowed - modified via the CAN bus by
using service data objects (SDO).

Index Subindex Object data Meaning

0x1301 0 Number of the
following entries

1 Information
Direction

Definition, if the SRDO is switched off (0), a
TSRDO (1) or a RSRDO (2)

2 Refresh Time /
SCT

Interval between two transmissions of a
SRDO

3 SRVT Interval between the two CAN messages of
a SRDO

4 Transmission
Type

Type of transmission of the SRDO (fix 254)

5 COB-ID 1 CAN identifier for plain data

6 COB-ID 2 CAN identifier for bitwise inverted data

Table 1: Communication parameters for the first SRDO

Information Direction (Subindex 1)
The Information Direction is used to determine if the SRDO is switched off or if it is
used as send or receive SRDO. The following values are possible:

Value Meaning

0x00 the SRDO is switched off

0x01 the SRDO is switched on as send-SRDO

0x02 the SRDO is switched on as receiver-SRDO

0x03 – 0xFF reserved

Table 2: Information Direction of a SRDO

Refresh Time / SCT (Subindex 2)
The Refresh Time / SCT sets the interval in milliseconds between two transmissions
of a SRDO that is the interval between the first CAN messages of a SRDO. For send-
SRDOs, the parameter is the interval between two transmissions of the SRDO. For
receiver-SRDOs, this is the maximum time allowed between two transmissions of the
SRDO for the SRDO to be valid.

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 4

SRDO SRDOSRDO

refresh time refresh timerefresh time

SCT

SCT

SCT

t

SCT exceeded

Figure 1: SCT principle

SRVT (Subindex 3)
The SRVT sets the maximum interval between the two CAN messages of a receiver-
SRDO which is the time between the message with plain data and the message with
bitwise inverted data. Send-SRDOs are directly sent one after another.

The specification is given in milliseconds.

SRDO SRDOSRDO

SRVT SRVTSRVT

t

SRVT

exceeded

SRDO

SRVT

Figure 2: SRVT principle

Transmission Type (Subindex 4)
The Transmission Type sets the character of a SRDO transmission. Only value 254 is
valid. This implies an asynchronous transfer (see CiA DS301).

COB-IDs (CAN identifier, Subindex 5 and 6)
COB-IDs 1 and 2 support the identification and definition of the priority of a SRDO for
bus accesses. There may only be one sender (producer) for each CAN message, but
several receivers (consumers). Values between 0x101 – 0x180 are acceptable. One
SRDO always consists of two sequenced COB-Ids whereas COB-ID 1 is uneven and
COB-ID 2 is the subsequent ID. Modifying the values is only possible if the SRDO is
switched off which means subindex 1 Information Direction is set to 0.

Bit 31 – 11 Bit 10 – 0

reserved (0) CAN Identifier

Table 3: Set-up of a COB-ID for a SRDO

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 5

1.1.2 Mapping parameter of a SRDO

Mapping parameters describe the data content of a SRDO. Mapping parameters are
entries in the object directory (Index 0x1381 – 0x13C0). One mapping entry is
structured such as the mapping of a PDO (see L-1020). But for the SRDO mapping,
one entry is always generated for plain data and followed by a corresponding entry for
bitwise inverted data.

Index Sub-

index

Object data Meaning

0x1381 0 8 Number of mapped entries

1 0x20000310 UNSIGEND16 to Index 0x2000, Subindex3 (plain
data)

2 0x21000310 UNSIGEND16 to Index 0x2100, Subindex3
(bitwise inverted data)

3 0x20010108 UNSIGEND8 to Index 0x2001, Subindex1 (plain
data)

4 0x21010108 UNSIGEND8 to Index 0x2101, Subindex1 (bitwise
inverted data)

5 0x20010208 UNSIGEND8 to Index 0x2001, Subindex2 (plain
data)

6 0x21010208 UNSIGEND8 to Index 0x2101, Subindex2 (bitwise
inverted data)

7 0x20020620 REAL32 to Index 0x2002, Subindex6 (plain data)

8 0x21020620 REAL32 to Index 0x2102, Subindex6 (bitwise
inverted data)

Table 4: Exemplary Mapping Table for the first SRDO

1.1.3 CRC of a SRDO

To check the validity of the parameters of a SRDO, a CRC is calculated via the
safety-related data of each SRDO. It is filed to Index 0x13FF in the object directory.
The number of the subindex complies with the number of the SRDO. The following
parameters go into the CRC:

Communication parameter:
a) 1 Byte Information Direction
b) 2 Byte Refresh Time / SCT
c) 1 Byte SRVT
d) 4 Byte COB-ID 1
e) 4 Byte COB-ID 2

Mapping parameter:
f) 1 Byte Subindex 0
g1) 1 Byte Subindex
h1) 4 Byte Mapping data
...
g128) 1 Byte Subindex
h128) 4 Byte Mapping data

The following polynom is used: G(x) = X16 + X12 + X5 + 1.
The start value for the CRC is 0x0000.

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 6

1.2 Configuration Valid

To make an entire SRDO configuration valid, a flag must be set to Index 0x13FE in
the object dictionary. This flag is automatically set to an invalid configuration for every
write access that is done to a safety-related SRDO parameter. After completing the
configuration, this flag must be set to a valid configuration.

Value Meaning

0xA5 the configuration is valid

Other values the configuration is invalid

Table 5: Configuration Valid

General procedure of a configuration:
1.) Writing all safety-related parameters and the checksums
2.) Reading back all safety-related parameters and the checksums and comparison

with the written parameters
3.) Setting the configuration to valid

This flag must be checked periodically by the application in the safety cycle time. As
long as this flag is not valid, the safe state must not be left.

1.3 Global Fail-Safe Command GFC

To increase the response time in safety-targeted systems, a GFC is defined that
consists of a high-priority CAN telegram (CAN identifier 1). The GFC does not contain
data and can be used by all participants. Afterwards, the initiating participant must
send the corresponding SRDO.

The usage of GFC is optional. It is event-triggered and not safety-related, because
there is no time monitoring.

For the GFC, the entry Global Fail-Safe Command parameter to Index 0x1300 is
included in the object directory. The following values are possible:

Value Description

0x00 GFC is not supported

0x01 GFC is supported

Other values reserved

Table 6: Global Fail-Safe Command GFC

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 7

1.4 Predefined Connection Set

For the SRDO, the Predefined Connection Set of CiA DS301 is extended as follows:

Broadcast objects:
Object Function

code

COB-ID Index in the

object directory

GFC 0000 0x001 0x1300

Table 7: Extension Broadcast Predefined Connection Set

Peer-to-Peer Objects:
Object Function

code

COB-ID plan data COB-ID bitwise
inverted data

Index in the object

directory

SRDO messages

SRDO

(Node-ID 1 – 32)

0010 0x101 – 0x13F 0x102 – 0x140 0x1301 – 0x1340

tx

SRDO

(Node-ID 33 –

64)

0010 0x141 – 0x17F 0x142 – 0x180 0x1301 – 0x1340

rx

Table 8: Extension Peer-to-Peer Predefined Connection Set

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 8

1.5 Overview safety-targeted entries in the object directory

Index Name Object

type

Data type Attributes

0x1300 GFC parameter var u8 rw

0x1301 1. SRDO communication
parameter

record SRDO
parameter

rw

...

0x1340 64. SRDO communication
parameter

record SRDO
parameter

rw

0x1341 Reserved

... ...

0x1380 Reserved

0x1381 1. SRDO mapping
parameter

array u32 rw

...

0x13C0 64. SRDO mapping
parameter

array u32 rw

0x13C1 reserved

... ...

0x13FD reserved

0x13FE Configuration Valid var u8 rw

0x13FF Safety Configuration
Checksum

array u16 rw

Table 9: SRDO entries in the object directory

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 9

1.6 Certification

The software package SO 1059 is an expansion pack for the CANopen Source Code
SO 877. It cannot be certified as a single unit. The certification requires a self-
contained unit with all the necessary software components. Therefore, the
manufacturer of the device is always responsible for the certification.

The necessities for certification depend on the safety integrity level, which shall be
achieved. SIL13 for example has higher necessary requirements than SIL2.

For SIL3 certification, the hardware needs to be designed with two channels (see
Figure 3 and Figure 4). Lower requirements can be built with a single-channel (see
Figure 5). For this purpose, the use of a Safety-CPU (e.g. TMS570LS by Texas
Instruments) is recommended.

CPU CPU

CAN

CAN

CAN

CAN

transceiver transceiver

Sensor Actuator

Figure 3: two-channel hardware with CPU

CPU

CPU CPU

CPUCAN

CAN

CAN

CAN

transceiver transceiver

Sensor Actuator

Figure 4: two-channel hardware with two CPU’s

Safety
CPU

Safety
CPU

CAN CAN

transceiver transceiver

Sensor Actuator

Figure 5: single-channel hardware with Safety-CPU

1 SIL Safety Integrity Level

Basics “CANopen Safety”

L-1077e_08 © SYS TEC electronic GmbH 2015 10

Furthermore, the implementation of additional safety checks in the software is
recommended. These are listed below:

- Repeated calculation of a CRC on the program memory

- Repeated testing of the RAM used

- Use of Watchdog

- Evaluation of exceptions that can occur due to programming errors (e. g.
accesses to protected memory, accesses to unaligned addresses, etc.)

The extension package SO-1059 already provides the following options for safety
tests in the software:

- Calculating CRC over SRDO configuration

- Sending of SRDOs over two CAN messages with the plain and bitwise inverted
data

- Monitoring the Safety Cycle Time SCT and Safety Related Validation Time
SRVT as well as the bitwise inverted data for received SRDOs

If an error occurs, the software must always go into a safe mode for the switching
outputs, so that no living beings can be injured or other machines destroyed.

It is recommended to coordinate the structure of the hardware with the certification
body before starting with the implementation.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 11

2 Extension of the CANopen user layer

This section explains the extension of the SYS TEC CANopen Stack user layer
described in L-1020. Moreover, it provides details about the data structures and API
functions of the SYS TEC electronic GmbH-specific implementation of the CANopen
standard CiA DS 304 - in the following called SRDO module.

The description contains the syntax of the functions, the parameter, the return value
and explanations about the usage.
Section 2.13 explains the meaning of the return codes and the supported abort
codes.

2.1 Limitations of the hardware

The usage of the SRDO module requires a CAN controller for which the chronological
sequence of CAN messages on the CAN bus can be determined.

Currently, the SRDO module is adjusted to the SJA1000 CAN controller of the
company Phillips. More CAN controllers will follow.

The number of high-prioritized buffer entries of the CAN controller in file obdcfg.h
must be set to the minimum number of receive- and send-SRDO.

2.2 Limitations of the software

The SRDO module can only be operated with a particular configuration of the CAN
driver. To do this, please put in the file copcfg.h the following defines to the following
values:

CDRV_USE_HIGHBUFF TRUE
CDRV_USE_BASIC_CAN TRUE
CDRV_USE_IDVALID TRUE

The number of high-priority buffer entries of the CAN controller in the file obdcfg.h is
set at least to the number of receive and send SRDOs. To ensure safety you can
increase this number.

The OD-Builder (up to version V1.19 of the date of this notice) can not be used to
create object directory with SRDOs because the index objects between 0x1300 and
0x13FF use special macros not support by this version of the OD-Builder.

If the number of SRDOs needs to be increased copy the corresponding objects in the
file obdict.h and adjust the object index resp. the subindex (see also chapter 2.10.1
and 2.10.2). If other objects needs to be extended or added you can create them in a
temporary directory with the OD-Builder and copy&paste them to the actual file
objdict.h.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 12

2.3 Software structure

The SRDO module is integrated in the stack in parallel to the existing modules such
as PDO or SDO.

CCM Main CCM DfPdo CCM Obj CCM Xxx

Instance table Instance table

PDO

Application

SDOS SDOC NMTS / NMTM

NMT

HBP HBCLSS

OBD

COB

CDRV

application layer

CCM layer

CANopen Stack layer

CAN driver layer

SRDO

Figure 6: General software structure

The implementation contains two different SRDO modules:

SRDO.C This module contains the services to define and transmit SRDOs.

SRDOSTC.C This module provides the same services as SRDO.C, but it

concerns the realization of static SRDO mapping.

CCMSRDO.C User interface of the SRDO module

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 13

2.4 Configuration of the software

The software configuration is the same as in the standard CANopen stack also with
the copcfg.h file. For SRDOs there are a few defines that are explained below. Lack
of these defines in the file copcfg.h activate their default settings.

SRDO_USE_STATIC_MAPPING:
Value range: FALSE, TRUE
Default: FALSE
Meaning: If TRUE static mapping is used instead of dynamic mapping of the

SRDOs. The mapping then cannot be changed neither via SDO nor
by the application during the runtime. Instead of SRDO.C
SRDOSTC.C file must be used.

SRDO_USE_DUMMY_MAPPING:
Value range: FALSE, TRUE
Default: FALSE
Meaning: When using the dynamic SRDO mapping dummy objects can be

mapped if this macro is defined to TRUE. This allows for Receive-
SRDOs not having to implement any variable in the OD, if these
variables are not important for a CANopen node.

SRDO_GRANULARITY:
Value range: 8, 16, 32, 64
Default: 8
Meaning: This define determines the smallest resolution in bits of the

application objects mapped to an SRDO. The value 8 means that the
smallest data size of an application object is 8 bit. Hence, up to eight
application objects containing the plain data and eight application
objects containing the bitwise inverted data may be mapped to an
SRDO. The value 16 means that the smallest data size of an
application object is 16 bit. Hence, half the number of application
objects may be mapped to an SRDO: up to four application objects
containing the plain data and four application objects containing the
bitwise inverted data.

SRDO_ALLOW_GAPS_IN_OD:
Value range: FALSE, TRUE
Default: FALSE
Meaning: This define is used to optimize the code requirements in SRDO

module. If the SRDOs in the object directory sequentially
implemented without gaps, then this define can be left to FALSE. In
this case, the SRDOs for the checks are referenced more quickly.
Are there some SRDOs missed in the object directory (e. g. only
SRDO2 with communication index 0x1301 is going to be implemented
but SRDO1 with index 0x1301 is missing – or SRDO1 and SRDO3 is
going to be implemented, but SRDO2 is missing) then this define
must be set to TRUE. In this case, the SRDOs are referenced by a
search algorithm from which a higher runtime of the software results.
See also chapter 2.10.2.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 14

SRDO_USE_GFC:
Value range: FALSE, TRUE
Default: FALSE
Meaning: If the GFC message is not needed in a project, then the API functions

CcmSendGfc () and SrdoSendGfc () and the object 0x1300 can be
omitted for reasons of optimization. In this case, the Define
SRDO_USE_GFC must be set to FALSE.

SRDO_USE_PROGMONITOR:
Value range: FALSE, TRUE
Default: FALSE
Meaning: Is a project of the Program-Monitor not needed, then it can be

removed for reasons of program code optimization by set this define
to FALSE. The callback function AppProgMonEvent () is not called in
this case.

SRDO_CHECK_SRVT_BEFORE_1STRX
Value range: FALSE, TRUE
Default: FALSE
Meaning: Should the SRVT also be monitored as the SCT cyclically by calling

the SrdoProcess () function if only one of the two CAN messages of a
SRDOs was received, then this constant must be set to TRUE. Is this
constant set to FALSE, then an error is detected at the earliest, when
the second CAN message was received after the SRVT or after the
SCT has expired. With TRUE, an error is detected immediately after
the SRVT.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 15

2.5 Function of the SRDO module

The SRDO module takes over the SRDO processing for dynamic SRDO mapping
(this means the mapping can be modified by the application or by the SDO during
runtime).
Module SRDOSTC supports the static SRDO mapping.

For each SRDO, a structure with all relevant data is generated to accelerate the
SRDO processing. Those structures are summarized in tables. The SRDO tables are
part of the object directory.

Each SRDO uses variables that must be created by the application beforehand.
During the mapping, addresses in the SRDO are directed to the corresponding
variables. This means that there must be a variable for each mappable object.

Therefore, when defining the object directory in file objdict.h, macro
OBD_SUBINDEX_RAM_USERDEF or OBD_SUBINDEX_RAM_USERDEF_RG must
be used for the respective object. The SRDO module checks the chosen parameters
for each modification of the mapping. If the object does not exist or if it does not have
a variable of the application, an error is reported.

2.5.1 Sending SRDOs

SRDOs are directly sent from the application. Therefore, function CcmSrdoSend() is
used. The Refresh Time is monitored in the application because only the application
can assure that the plain and bitwise inverted data are consistent before the CAN
messages of a SRDO are sent.

It is important that the first sending must be held up by 0,5ms * Node-ID after
switching into the node state OPERATIONAL. The change of the node state is

communicated to the application in function AppCbNmtEvent().

2.5.2 Receiving SRDOs

Function SrdoProcess() is in charge of receiving SRDOs. This function must be

called cyclically which is realized for function CcmProcess().

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 16

2.5.3 Sending and receipt signaling of SRDOs

The sending and receipt is signaled to the application via two different ways.

One the one hand via the callback function of the application AppSrdoEvent() and

AppSrdoError() and on the other hand via the state of a SRDO that is to be polled by

the application. It is read with CcmSrdoGetState() and written with

CcmSrdoSetState().

The state of a SRDO is bit-coded in the following way:
TX-SRDO:

xx00 xxxxb Sending was ok

xx01 xxxxb Sending was incorrect

xx11 xxxxb SRDO was edited

RX-SRDO:

xx00 xxxxb Receipt was ok

xx01 xxxxb Receipt was incorrect

xx11 xxxxb SRDO was edited

SRDO-ERROR:

00xx xxxxb Reset value

01xx xxxxb Value prior to calling AppSrdoError()

10xx xxxxb AppSrdoError() must set this value

The application must follow both ways.

Example for the receipt of a SRDO:
The SRDO module sets the state to “receipt OK”. Afterwards, the SRDO module calls

function AppSrdoEvent(). This function checks if the state is set to „receipt OK“. If
this is not the case, it is relevant to safety. The application must react. If the state is
correct, the status is set to “SRDO was edited”.

The state must also be checked for the application in the main loop. It must always be
in state “SRDO was edited” because otherwise it would indicate that the SRDO in

function AppSrdoEvent() was not edited. This would be safety-critical.

With the implementation of the SRDO module we follow the philosophy that the
change from safe state to operating state is performed only with the successful
reception of the SRDOs. If an error appears during runtime, the application is in
charge of switching the associated safety function to the safe state.

2.5.4 Logical monitoring of program run of the SRDO module

A logical monitoring of the program run is integrated in the SRDO module. Function

AppProgMonEvent() is called with the respective Event for different program steps.
The actual realization of the program run monitor takes place in the application
function that is called.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 17

2.6 Function of the SRDOSTC module

The SRDOSTC module replaces the SRDO module for static SRDO mapping. With
the static SRDP mapping, the SRDOs are already mapped in the OD. The mapping
cannot be modified by the application or the SDO. Thus, fewer CODE memory is
needed.

CANopen application CANopen OD

CAN-ID

0x2000, 1

0x2000, 2

0x2000, 3

0x2000, 4

0x2001, 1

0x2001, 2

0x2001, 3

0x2001, 4

BYTE m_bNormalDig1

BYTE m_bNormalDig2

BYTE m_bNormalDig3

BYTE m_bNormalDig4

WORD m_w NormalDig1

WORD m_w NormalDig2

TSRDO 1:

CAN-ID

0x2100, 1

0x2100, 2

0x2100, 3

0x2100, 4

0x2101, 1

0x2101, 2

0x2101, 3

0x2101, 4

BYTE m_bInversDig1

BYTE m_bInversDig2

BYTE m_bInversDig3

BYTE m_bInversDig4

WORD m_w InversDig1

WORD m_w InversDig2

plain data:

bitw ise inverted data:

Figure 7: Figure of variable fields

The relation of SRDO variables in the application to data in the OD or to data in the

CAN message is created via function CcmStaticDefineSrdoVarField(). The
application must provide two times 8 connected data bytes maximum for each SRDO
(which means without fill bytes  Struct Alignment 1). In this manual these data
packages are called variable fields of a SRDO. Mapping the variable fields in the OD

takes place in the application by calling function CcmDefineVarTab() or through
macro OBD_SUBINDEX_RAM_EXTVAR (see L-1024) in the OD.

To use the static SRDO mapping, file SRDOSTC.C must be mounted instead of file
SRDO.C. Moreover, define SRDO_USE_STATIC_MAPPING must be set to TRUE
within file CopCfg.h.

Restriction:
For CPUs that do not support uneven accesses to data types larger BYTE, a mixed
mapping of BYTE and WORD is not possible, e.g. for example:
BYTE – WORD – BYTE

But the following mapping is possible:
BYTE – BYTE – WORD

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 18

2.7 General program run

Figure 8: General program run

START

Initializing the

CANopen Stack

CcmInitCANOpen()

...

[SrdoInit()]

 [(SrdoAddInstance())]

AppSrdoEvent()

processing the NMT
state machine

CcmConnectToNet()

...

[SrdoNmtEvent()]

CcmProcess()

AppSrdoError()

AppGfcEvent()

AppProgMonEvent()

SrdoProcess()

Refresh time
exceeded?

CcmSendSrdo()

safety cycle
exceeded?

CcmCheckSrdoConfig()

Operational?

Tx-Srdo?

program
monitor OK?

safety stopp
yes

no

yes

yes

yes

yes

no

no

no

no

Srdo
received

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 19

2.8 Extension of the CCM layer

File CCMMAIN.C is extended for the integration of the SRDO module.
The SRDO module must be activated in file COPCFG.H via define
CCM_MODULE_INTEGRATION. Therefore, constant CCM_MODULE_SRDO must be

added.

If the SRDO module is activated, function CcmInitCANOpen() executes the
initialization of the SRDO module. The appropriate SRDO function is also called in

function CcmProcess().

In the following, user functions of the SRDO module are described.

2.8.1 Function CcmSendSrdo

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmSendSrdo (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p);

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

wSrdoCommuIndex_p: Object index of the communication parameter of the

SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.5 - Function SrdoSend().

Description:

The functions sends a SRDO specified via the communication index or it sends all
SRDO if 0x0000 is specified as communication index. Before a SRDO sends CAN-
messages all bits of the data are checked in terms of correct inverting. If at least one
bit is not correct inverted all CAN messages of a SRDO are not sent and the callback
function APPSrdoError() is called.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 20

Figure 9: Principle for sending SRDOs

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 21

2.8.2 Function CcmCheckSrdoConfig

Syntax:
#include <cop.h>

tCopKernelPUBLIC CcmCheckSrdoConfig (

 CCM_DECL_INSTANCE_HDL_

 WORD * pwCommuIndex_p);

Parameter:
CCM_DECL_INSTANCE_HDL_: Instance handle

pwCommuIndex_p: Pointer to a variable in which the function provides

the communication index of the faulty SRDO in case
of a faulty configuration

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.7 - Function SrdoCheckConfig().

Description:

The function calculates the checksum (CRC) for all going SRDO (also deactivated
SRDOs with direction = 0) and compares them to the one configured in the OD. If it
identifies an error, it sends back the error and the communication index of the faulty
SRDO. This function represents the API function for SrdoCheckConfig() and calls it. It
is necessary to call this function as part of the diagnosis periodically in the diagnostic
test interval. If an error is detected and the entry Configuration Valid (Index 0x13FE)
is valid (0xA5) then has to be changed in the safe state.

 Please note: The function SrdoCheckConfig() is called with the value 0xA5 by the
SRDO module when the entry Configuration Valid is written (Index 0x13FE in the
object directory).

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 22

2.8.3 Function CcmSendGfc

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmSendGfc (CCM_DECL_INSTANCE_HDL)

Parameter:

CCM_DECL_INSTANCE_HDL: Instance handle

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.8 - Function SrdoSendGfc().

Description:

The function sends a GFC message.

It will be not available if the configuration of SRDO_USE_GFC is set to FALSE.
This function represents the API-function for Function SrdoSendGfc() and calls it.
The following SRDO must be transferred by the application via function

CcmSendSrdo().

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 23

2.8.4 Function CcmGetSrdoState

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmGetSrdoState (CCM_DECL_INSTANCE_HDL_

 BYTE * pSrdoState_p,

 WORD wSrdoCommuIndex_p);

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

pSrdoState_p: Pointer to which the functions copies the status

wSrdoCommuIndex_p: Object index which contains communication

parameters of the SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.9 - Function SrdoGetState().

Description:

The function reads the status of a SRDO. For setup and usage of the status, please
see 2.5.3.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 24

2.8.5 Function CcmSetSrdoState

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmSetSrdoState (CCM_DECL_INSTANCE_HDL_

 BYTE SrdoState_p,

 WORD wSrdoCommuIndex_p);

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

SrdoState_p: status to be set

wSrdoCommuIndex_p: Object index which contains communication

parameters of the SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.10 - Function SrdoSetState().

Description:

The function writes the status of a SRDO. For setup and usage of the status, please
see 2.5.3.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 25

2.8.6 Function CcmGetSrdoParam

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmGetSrdoParam (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p,

 tSrdoCommuParam * pSrdoCommuParam_p,

 tSrdoMappParam * pSrdoMappParam_p);

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

wSrdoCommuIndex_p: Object index which contains communication

parameters of the SRDO in the object directory

pSrdoCommuParam_p: Pointer to the structure in which the function copies

the values for Information Direction and SCT

pSrdoMappParam_p: Pointer to the structure in which the function copies

the values for Number of Mapped Objects and the
pointers to the mapped variables

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.11.11 - Function SrdoGetCommuParam() and 2.11.12 -
Function SrdoGetMappParam().

Description:

The function reads the parameters of a SRDO needed in the application. Those are
the communication parameters Information Direction and SCT as well as the mapping
parameters Number of Mapped Objects and the pointer to the mapped variables. The
function only completes the structures if the transferred pointer is not the null-pointer.
Structure tSrdoMappParam only exists for dynamic mapping.

This function represents the API-function for Function SrdoGetCommuParam() and
the Function SrdoGetMappParam() and calls them.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 26

Structure tSrdoCommuParam is set up as follows:

typedef struct

{

 BYTE m_bDirection; // direction of SRDO

 // (0-invalid; 1-Tx; 2-Rx)

 WORD m_wSct; // refresh time / SCT

} tSrdoCommuParam;

Structure tSrdoMappParam is set up as follows:

typedef struct

{

 BYTE m_bNoOfMappedObjects;

 // Number of mapped objects

 void MEM* m_apMappedVariable[SRDO_MAX_MAPPENTRIES];

 // array of pointers to the

 mapped variables

} tSrdoMappParam;

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 27

2.8.7 Function CcmStaticDefineSrdoVarFields

The function only is available for static SRDO mapping.

Syntax:

#include <cop.h>

tCopKernel PUBLIC CcmStaticDefineSrdoVarFields(

CCM_DECL_INSTANCE_HDL _

 WORD wCommuIndex_p,

 void MEM* pNormalData_p,

 void MEM* pInversData_p);

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

wCommuIndex_p: Communication index of the SRDO in the OD for

which variables shall be defined.

pNormalData_p: Pointer to connected variable field which shall be

linked (or mapped) with plain data of SRDO.

pInversData_p: Pointer to a connected variable field which shall be

linked (or mapped) with bitwise inverted data of the
SRDO.

Return:

kCopSuccessful The function was executed without error.

For more return codes, see 2.12.1 - Function SrdoStaticDefineVarField().

Description:

This function defines the variable fields for a SRDO. The application only modifies the
variables via those variable fields. When sending a SRDO, those data bytes are
copied from the variable field into the two CAN messages. When receiving a SRDO,
the data bytes of the CAN messages are directly copied into the variable fields.

The function checks if the specified variable fields are conform with the variables to
which the mapping in the OD points.

This function represents the API-function for SrdoStaticDefineVarFields() and calls it.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 28

2.8.8 Function CcmCalcSrdoCrc

Syntax:
#include <srdo.h>

tCopKernel PUBLIC CcmCalcSrdoCrc (MCO_DECL_INSTANCE_PTR_

 WORD wCommuIndex_p,

 WORD* pwCrc_p);

Parameter:
MCO_DECL_INSTANCE_PTR_: Pointer to the instance

wCommuIndex_p: Index object contains the communication

parameters of the SRDO in the object directory

pwCrc_p: Pointer to a WORD variable to return the 16-bit

CRC in the calling function.

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:
The function calculates the checksum (CRC) over a SRDO and returns it to the
calling function. The calculation is done also when the SRDO is turned off. There is
no comparison to the accuracy of the CRC. The application can use this function to
update the CRC of a SRDOs if the configuration of SRDOs needs to be dynamically
set new over the application (eg changing the COB-ID depending on the node ID).
This function represents the API function SrdoCalcSrdoCrc () and calls it.

Note: The validity check of the CRC, that is the calculation of the CRC over the
configuration data of a SRDO and comparison with the associated CRC in the index

0x13FF is made in the function CcmCheckSrdoConfig ().

Example:

 WORD wTestCrc;

 Ret = CcmCalcSrdoCrc (0x1301, &wTestCrc);

 if (Ret != kCopSuccessful)

 {

 goto Exit;

 }

 PRINTF1 ("Calculated CRC of SRDO1 = 0x%04X\n", wTestCrc);

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 29

2.9 Functions in the application

Function of the application that are called by the SRDO module as callback function
are called directly and not via function pointer as for the rest in CANopen.
Consequently, those functions must be available in the application and may not be
renamed.

2.9.1 Function AppSrdoEvent

Syntax:

#include <cop.h>

tCopKernel PUBLIC AppSrdoEvent (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p)

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

wCommuIndex_p: Communication index of the SRDO in the OD

Return:

kCopSuccessful The function was executed without error.

All other return codes are reserved.

Description:

The function is called by the SRDO module if the transmission of a SRDO is accurate
(receiving or sending). The status of the SRDO must be taken care of in the function
according to chapter 2.5.3.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 30

tCopKernel PUBLIC AppSrdoEvent (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p)

{

BYTE bSrdoState;

tCopKernel Ret;

 Ret = CcmGetSrdoState (&bSrdoState,

 wSrdoCommuIndex_p);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 if ((bSrdoState & 0x30) != 0x00)

 {

 // safety error !!!

 ...

 }

 // application specific processing

 // e.g. changing digital/analog outputs

 ...

 Ret = CcmSetSrdoState ((bSrdoState | 0x30),

 wSrdoCommuIndex_p);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 return kCopSuccessful;

}

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 31

2.9.2 Function AppSrdoError

Syntax:

#include <cop.h>

tCopKernel PUBLIC AppSrdoError (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p,

 tCopKernel ErrorCode_p)

Parameter:

CCM_DECL_INSTANCE_HDL_: Instance handle

wCommuIndex_p: Communication index of the SRDO in the OD

ErrorCode_p: Error code of the SRDO:

kCopSrdoSctTimeout The SCT of a receive SRDO was exceeded.

kCopSrdoSrvtTimeout The SRVT of a receive SRDO was exceeded.

kCopSrdoNotInOrder The two CAN meassages of a SRDO have been

received in the wrong order.

kCopSrdoDataError The data of the CAN messages of a SRDO is not

inverse.

More error codes are possible from the CDRV module.

Return:

kCopSuccessful The function was executed without error.

All other return codes are reserved.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 32

Description:

The function is called by the SRDO module if the transmission of a SRDO is incorrect
(receiving or sending). The status of the SRDO must be taken care of in the function
according to chapter 2.5.3.

tCopKernel PUBLIC AppSrdoError (CCM_DECL_INSTANCE_HDL_

 WORD wSrdoCommuIndex_p,

 tCopKernel ErrorCode_p)

{

BYTE bSrdoState;

tCopKernel Ret;

 Ret = CcmGetSrdoState (&bSrdoState,

 wSrdoCommuIndex_p);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 if ((bSrdoState & 0x30) == 0x10)

 {

 // process information according to the application

 // for example switch outputs of SRDO off

 // Status “SRDO bearbeitet” on set

 bSrdoState |= 0x30;

 // toggle Bit 6 and 7

 bSrdoState ^= 0xC0;

 }

 else

 {

 // Safety Critical Error !!!

 ...

 }

 Ret = CcmSetSrdoState ((bSrdoState),

 wSrdoCommuIndex_p);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 return kCopSuccessful;

}

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 1

2.9.3 Function AppGfcEvent

Syntax:

#include <cop.h>

tCopKernel PUBLIC AppGfcEvent (CCM_DECL_INSTANCE_HDL)

Parameter:

CCM_DECL_INSTANCE_HDL: Instance handle

Return:

kCopSuccessful The function was executed without error.

All other return codes are reserved.

Description:

The function is called by the SRDO module when a GFG message is received.

tCopKernel PUBLIC AppGfcEvent (CCM_DECL_INSTANCE_HDL)

{

 // process information according to the application

 // for example change to intrinsically safe state

 return kCopSuccessful;

}

This function is not called if the configuration SRDO_USE_GFC is set to FALSE.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 2

2.9.4 Function AppProgMonEvent

Syntax:

#include <cop.h>

tCopKernel PUBLIC AppProgMonEvent (CCM_DECL_INSTANCE_HDL_

 tProgMonEvent Event_p)

Parameter:

CCM_DECL_INSTANCE_HDL: Instance handle

Event_p: Event of the executed program code:

kSrdoPMEvSctChecked

 SCT of a SRDO was tested

kSrdoPMEvSctNotCheckedItIsTx

SCT of a SRDO was not tested, because it is a send SRDO

kSrdoPMEvSctNotCheckedItIsInvalid

SCT of a SRDO was not tested, because is is switched off

kSrdoPMEvSctNotCheckedNotOperational

SCT of a SRDO was not tested, because the node is not in

OPERATIONAL

kSrdoPMEvSrdoError

found faulty SRDO (send- and receive SRDO)

kSrdoPMEvSrdoReceived

a SRDO was received

kSrdoPMEvSrdoTransmitted

a SRDO has been sent

Return:

kCopSuccessful The function was executed without error.

All other return codes are reserved.

Description:

The function is called by the SRDO module when certain program steps are
processed. The application can setup a logical monitoring of the program run.

This function is not called if in the configuration file copcfg.h the Define
SRDO_USE_PROGMONITOR is set to FALSE.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 3

tCopKernel PUBLIC AppProgMonEvent (CCM_DECL_INSTANCE_HDL_

 tProgMonEvent Event_p)

{

 switch (Event_p)

 {

 case kSrdoPMEvSctChecked:

 // is called for each Rx SRDO

 wPMonValue_g += kPMonSctChecked;

 break;

 case kSrdoPMEvSctNotCheckedItIsTx:

 // is called for each Rx SRDO

 wPMonValue_g += kPMonSctNotCheckedItIsTx;

 break;

 case kSrdoPMEvSctNotCheckedItIsInvalid:

 // is called for each switched-off SRDO

 wPMonValue_g += kPMonSctNotCheckedItIsInvalid;

 break;

 case kSrdoPMEvSctNotCheckedNotOperational:

 // is called once for all SRDO

 wPMonValue_g += kPMonSctNotCheckedNotOperational;

 break;

 case kSrdoPMEvSrdoError:

 // is called for faulty SRDO

 wPMonValue_g += kPMonSrdoError;

 break;

 case kSrdoPMEvSrdoReceived:

 // is called for each received SRDO

 wPMonValue_g += kPMonSrdoReceived;

 break;

 case kSrdoPMEvSrdoTransmitted:

 // is called for each sent SRDO

 wPMonValue_g += kPMonSrdoTransmitted;

 break;

 default:

 break;

 }

 return kCopSuccessful;

}

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 4

2.9.5 Function AppCbNmtEvent

This function is called by the CANopen Stack when the NMT-Statemachine is running
and must contain different event calls of the SRDO module:

kNmtEvResetCommunication: Notify variable fields by calling

CcmStaticDefineSrdoVarFields() (for static
mapping)

 Initialisation of the SRDO communication parameter

by calling CcmWriteObject() with the respective
parameters

 // define all SRDOs in static SRDO modul

 Ret = CcmStaticDefineSrdoVarFields (0x1301,

 &SrdoNormalData.m_abSrdoData[0],

 &SrdoInversData.m_abSrdoData[0]);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 // write information direction into OD

 Ret = CcmWriteObject (0x1301, 1, &bDirection, 1);

 if (Ret != kCopSuccessful)

 {

 ...

 }

 // set configuration valid

 bTemp = 0xA5;

 Ret = CcmWriteObject (0x13FE, 0, &bTemp, 1);

 if (Ret != kCopSuccessful)

 {

 ...

 }

kNmtEvEnterPreOperational: SRDO may not be processed anymore (save NMT

status to evaluate this in the main loop)

 bSrdoState = kNotOperational;

kNmtEvEnterOperational: read the actual SRDO parameter by calling

CcmGetSrdoParameter()
 SRDO must be processed (save NMT status to

evaluate this in the main loop)

 CcmGetSrdoParam (0x1301, &SrdoCommuParam);

 bSrdoState = kEnterOperational;

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 5

2.10 Object directory

Various safety-related entries of the object directory are described in chapter 1.

2.10.1 Macros for safety objects

There are special macros for the different SRDO entries for the realisation in the
CANopen Software. Those are described in this chapter.

Please Note:
The OD-builder (at the time of this note version V1.19) can not generate the specific
macros for the SRDOs. Therefore, you should not use this tool for the creation of the
object directory. Please read the chapter 2.2

Further information about the object directory is described in document L-1024
“CANopen Object Directory Software Manual”.

OBD_CREATE_SRDO_GFC_PARAM()

The macro OBD_CREATE_SRDO_GFC_PARAM is used to create entry “Global Fail-
Safe Command Parameter” (Index 0x1300). The macro does not have parameters.

OBD_CREATE_SRDO_COMMU(ind,num,dir,sct,srvt,cob1,cob2)

and

OBD_BEGIN_SRDO_MAPP(ind,num,cnt)

OBD_SUBINDEX_SRDO_MAPP(ind,sub,num,name,val)

OBD_END_SRDO_MAPP(ind)

The macro OBD_CREATE_SRDO_COMMU is used to define the communication
parameter of the SRDO.
Macros OBD_xxx_SRDO_MAPP are used to define the mapping parameters of a
SRDO. An entry of a SRDO always starts with the macro
OBD_BEGIN_SRDO_MAPP. The different subindex entries are defined by macro
OBD_SUBINDEX_SRDO_MAPP. The entry ends with OBD_END_SRDO_MAPP.
Since there is always the communication parameter and the mapping parameter that
correspond to one SRDO, it is important that for both the continuous numbers of the
SRDO are set correctly.

 ind: Object index of the SRDO to be defined (0x1301 to 0x1340 and 0x1381 to
0x13C0 for the mapping)

 num: Continuous number from 0 to 63 for the corresponding entry in the table.
The first always gets assigned the continuous number 0. The following
entries always get the next larger number of the previous entry. For
example, if the SRDOs 0x1301, 0x1302 and 0x1305 are generated, the
SRDO 0x1301 gets a 0, the 01302 a 1 and the 0x1305 a 2.

 dir: Information direction of the SRDO. The value corresponds with the index
0x1301 to 0x1340 Subindex 1.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 6

 sct: Refresh-Time / SCT of the SRDO. The value corresponds with index
0x1301 to 0x1340 Subindex 2.

 srvt: SRVT of the SRDO. The value corresponds with index 0x1301 to 0x1340
Subindex 3.

 cob1: COB-ID 1 of the SRDO, this means CAN-Identifier of the message that
contains plain data. The value corresponds with index 0x1301 to 0x1340
Subindex 5.

 cob2: COB-ID 2 of the SRDO, this means CAN-Identifier of the message that
contains bitwise inverted data. The value corresponds with index 0x1301
to 0x1340 Subindex 6.

 cnt: Number of mapping entries of the SRDO. The value corresponds with the
object entry 0x1381 to 0x13C0 Subindex 0.

 sub: Subindex of the mapping entry that is to be defined

 name: Object name

 val: Default value for the mapping data that must be accepted after Reset

OBD_CREATE_SRDO_CFG_VALID()

The macro OBD_CREATE_SRDO_CFG_VALID is used to generate the entry
“Configuration Valid” (Index 0x13FE). The macro does not have parameters.

OBD_BEGIN_SRDO_CRC(cnt)

 OBD_SUBINDEX_SRDO_CRC(sub,name)

OBD_END_SRDO_CRC()

The macros are used to define the object entries “Safety Configuration Checksum”
(Index 0x13FF).

 cnt: Number of CRC table entries. If the indexes 0x1301 to 0x1340 contain
gaps, CRC entries must be defined. The nth SRDO corresponds with the
nth subindex of the CRC

 sub: Subindex of the CRC entry that is to be defined

 name: Object name

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 7

2.10.2 Advice for macros

Please note, the objects in the object dictionary have to be created in ascending order
otherwise the CANopen Stack is not able to detect the objects in the OD. This means
that the following macros must always be applied in the order listed below. Macros for
communication and mapping parameters can occur multiple times, depending on how
many SRDOs should be applied.

 OBD_CREATE_SRDO_GFC_PARAM()
 OBD_CREATE_SRDO_COMMU(…)
 OBD_BEGIN_SRDO_MAPP(…)
 OBD_CREATE_SRDO_CFG_VALID()
 OBD_BEGIN_SRDO_CRC(…)

If several SRDOs are created in one OD it must be taken care that each SRDO has a
consecutive number starting with 0. This number must be transferred to the macro
OBD_CREATE_SRDO_COMMU() as the second parameter, to the macro
OBD_BEGIN_SRDO_MAPP() also as second parameter and to the macro
OBD_SUBINDEX_SRDO_MAPP() as the third parameter. The subsequent SRDO
always gets the number increased by one. The number for the communication
parameters of a SRDO is always the same number as the corresponding mapping
parameters. Please regard that the absolute count of SRDOs must match the define
SRDO_MAX_SRDO_IN_OBD in the file obdcfg.h.

Are the SRDOs in the object dictionary created with gaps, then the define
SRDO_ALLOW_GAPS_IN_OD in the file copcfg.h must set to TRUE. With “gaps” is
meant that for example SRDO1 and SRDO3 are created in the OD, but not SRDO2.
In this case, the number of SRDO1 would be 0 and SRDO3 would get the serial
number 1. A definite assignment of communication index and sequential number is
then no longer possible. In order that the CANopen stack still can find the
corresponding SRDO, the stack must implement a different search algorithm, which
can lead to a higher running time. Therefore, please avoid such gaps in the object
dictionary.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 8

communication

index

sequential

number

mapping

index

Figure 10: Example of an OD with 2 SRDOs

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 9

2.11 Function descriptions of the SRDO module

2.11.1 Function SrdoInit

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoInit (MCO_DECL_PTR_INSTANCE_PTR_

 tSrdoInitParam MEM* pInitParam_p);

Parameter:

MCO_DECL_PTR_INSTANCE_PTR_: Pointer to the instance pointer

pInitParam_p: Pointer to the parameter structure for initializing the

SRDO module instance

Return:

kCopSuccessful The function was executed without error.

kCopSrdoGranularityMismatch The configured SRDO granularity is not supported.

Further return codes of the standard CANopen are not possible.

Description:

The function deletes the instance table and initializes the first instance by using

function SrdoAddInstance(). The parameter structure tSrdoInitParam contains the
parameters for initializing the instance and is setup as follows:

typedef struct

{

#if (COP_MAX_INSTANCES > 1)

 void MEM* m_ObdInstance;

 void MEM* m_CobInstance;

 void MEM* m_CdrvInstance;

#endif

 tSrdoTabParam m_SrdoTabParam;

 BYTE m_bGranularity;

 BYTE MEM* m_pbSrdoConfigValid;

} tSrdoInitParam;

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 10

2.11.2 Function SrdoAddInstance

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoAddInstance (MCO_DECL_PTR_INSTANCE_PTR_

 tSrdoInitParam MEM* pInitParam_p);

Parameter:

MCO_DECL_PTR_INSTANCE_PTR_: Pointer to the instance pointer

pInitParam_p: Pointer to the parameter structure for initializing the

SRDO module instance

Return:

kCopSuccessful The function was executed without error.

kCopSrdoGranularityMismatch The configured SRDO granularity is not supported.

Further return codes of the standard CANopen are possible.

Description:

This function adds a new instance to the SRDO module. Therefore, define
COP_MAX_INSTANCES must be larger than 1. If there is no free entry available in
the instance table, the functions sends back an error. The SRDO tables for this
instance are initialized.

Chapter 2.11.1. contains the setup of the parameter structure tSrdoInitParam.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 11

2.11.3 Function SrdoDeleteInstance

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoDeleteInstance (MCO_DECL_INSTANCE_PTR);

Parameter:

MCO_DECL_INSTANCE_PTR: Pointer to the instance

Return:

kCopSuccessful The function was executed without error.

Further return codes of the standard CANopen are possible.

Description:

This function deletes all generated communication objects of the stated instance and
marks it as unused.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 12

2.11.4 Function SrdoNmtEvent

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoNmtEvent (MCO_DECL_INSTANCE_PTR_

 tNmtEvent NmtEvent_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

NmtEvent_p: a NMT event that occurred (see L-1020)

Return:

kCopSuccessful The function was executed without error.

Further return codes of the standard CANopen are possible.

Description:

The function processes a NMT event which was triggered via the NMT State
Machine. An event induces a change of the NMT node status. For each node status,
the execution of the SRDO module is controlled.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 13

2.11.5 Function SrdoSend

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoSend (MCO_DECL_INSTANCE_PTR_

 WORD wSrdoCommuIndex_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

wSrdoCommuIndex_p: Object index of the communication parameters of

the SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNmtError The action is not allowed in this NMT state.

kCopSrdoInvalidCfg The action was tried with a faulty SRDO

configuration.

kCopSrdoNotExist The SRDO chosen does not exist.

kCopSrdoRxTxConflict It was tried to send a receive SRDO.

kCopSrdoInvalid The action was tried with a switched off SRDO.

More return codes of the standard CANopen are possible.

Description:

The function sends one SRDO that is stated via communication index or all SRDOs
when 0x0000 is stated as communication index.

See also the related API Function CcmSendSrdo.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 14

2.11.6 Function SrdoProcess

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoProcess (MCO_DECL_INSTANCE_PTR)

Parameter:

MCO_DECL_INSTANCE_PTR: Pointer to the instance

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotHandledInApp The SRDO error reported to the application was not

processed correctly

 Further return codes of the standard CANopen are possible.

Description:

The function is called instead of function CobProcessReceiveQueue(). It works on
receiving CAN messages from the CANopen stack. Receive SRDOs is given a
preferential treatment. In addition this function checks the SCT of all receiving
SRDOs. If the SCT is expired, but received none of the two CAN messages of the
SRDOs, then the function AppSrdoError () is called with the error code
kCopSrdoSctTimeout. Is the constant SRDO_CHECK_SRVT_BEFORE_1STRX set
to TRUE, this function checks the SRVT of all SRDOs. If only one of the two CAN
messages was received and the SRVT has expired, then the function AppSrdoError
() is called with the error code kCopSrdoSrvtTimeout.

This function is called cyclically. Variations in terms of the timing of the SRDOs
depend on this function.

The function SrdoProcess () is called automatically by CcmProcess() from CcmMain.c
once the SRDO is enabled in CCM_MODUL_INTEGRATION.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 15

2.11.7 Function SrdoCheckConfig

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoCheckConfig (MCO_DECL_INSTANCE_PTR_

 WORD * pwCommuIndex_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

pwCommuIndex_p: Pointer to a variable in which the function stores the

communication index of the faulty SRDO in case of
faulty configuration

Return:

kCopSuccessful The function was executed without error.

kCopSrdoCfgCrcError The SRDO configuration is faulty (CRC).

Description:

The function calculates the check sum over all SRDO (also deactivated SRDOs with
Direction = 0) and compares them to the check sum that is configured in the OD. If it
detects an error, it sends back an error and the corresponding communication index
of the faulty SRDO. The function is called by the SRDO module upon writing the entry
Configuration Valid (Index 0x13FE in the object directory) with value 0xA5.

See also the related API function Function CcmCheckSrdoConfig().

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 16

2.11.8 Function SrdoSendGfc

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoSendGfc (MCO_DECL_INSTANCE_PTR)

Parameter:

MCO_DECL_INSTANCE_PTR: Pointer to the instance

Return:

kCopSuccessful The function was executed without error.

 Further return codes of the standard CANopen are possible.

Description:

The function sends a GFC message.

It will not be available if the configuration SRDO_USE_GFC is set to FALSE.

See also the related API Function CcmSendGfc

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 17

2.11.9 Function SrdoGetState

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoGetState (MCO_DECL_INSTANCE_PTR_

 BYTE * pSrdoState_p,

 WORD wSrdoCommuIndex_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

pSrdoState_p: Pointer to which the function copies the status

wSrdoCommuIndex_p: Object index that contains communication

parameters of the SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:

The function reads the status of a SRDO. For setup and usage of the status see
chapter 2.5.3. See associated API-function Function CcmGetSrdoParam.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 18

2.11.10 Function SrdoSetState

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoSetState (MCO_DECL_INSTANCE_PTR_

 BYTE SrdoState_p,

 WORD wSrdoCommuIndex_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

SrdoState_p: Status to be set

wSrdoCommuIndex_p: Object index that contains communication

parameters of the SRDO in the object directory

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:

The function writes the status of a SRDO. For setup and usage of the status see
chapter 2.5.3.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 19

2.11.11 Function SrdoGetCommuParam

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoGetCommuParam (MCO_DECL_INSTANCE_PTR_

 WORD wSrdoCommuIndex_p,

 tSrdoCommuParam * pSrdoCommuParam_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

wSrdoCommuIndex_p: Object index that contains communication

parameters of the SRDO in the object directory

pSrdoCommuParam_p: Pointer to the structure in which the function copies

the values for the Information Direction and SCT

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:

The function reads the parameters of a SRDO that are necessary in the application.
Those are Information Direction and SCT. See associated API-function
See associated API-Function CcmGetSrdoParam().

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 20

2.11.12 Function SrdoGetMappParam

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoGetMappParam (MCO_DECL_INSTANCE_PTR_

 WORD wSrdoCommuIndex_p,

 tSrdoMappParam * pSrdoMappParam_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

wSrdoCommuIndex_p: Object index that contains communication

parameters of the SRDO in the object directory

pSrdoCommuParam_p: Pointer to the structure in which the function copies

the values for the Number Of Mapped Objects and
the Variable pointer

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:

The function reads the mapping parameters of a SRDO that are necessary in the
application. Thos are Number of Mapped Objects and the Pointers to the mapped
variables. See associated API-Function CcmGetSrdoParam().

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 21

2.11.13 Function SrdoCalcSrdoCrc

Syntax:
#include <srdo.h>

tCopKernel PUBLIC SrdoCalcSrdoCrc (MCO_DECL_INSTANCE_PTR_

 WORD wCommuIndex_p,

 tSrdoTabEntry MEM* pSrdoEntry_p,

 WORD* pwCrc_p);

Parameter:
MCO_DECL_INSTANCE_PTR_: Pointer to instance

wCommuIndex_p: Object index which contains the communication

parameters of the SRDO in the object directory

pSrdoEntry_p: Must always be passed with 0

pwCrc_p: Pointer to a WORD variable for receiving 16 Bit

CRC within the calling function.

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

Description:
The function calculates the checksum (CRC) (CRC) over a SRDO and returns it to
the calling function. The calculation is done also when the SRDO is turned off. There
is no comparison to the accuracy of the CRC.

The application can use this functionality via the API function CcmCalcSrdoCrc () to
update the CRC of a SRDOs when the configuring of a SRDOs on the application
must be set new dynamically (e.g. changing the COB-ID depending on the node ID).

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 22

2.12 Function descriptions of the SRDOSTC module

The following functions of the SRDO module are also implemented in the SRDOSTC
module. Their meanings and syntax can be taken from 2.11:

SrdoInit(), SrdoAddInstance(), SrdoDeleteInstance(), SrdoNmtEvent(),
SrdoSend(), SrdoProcess(), SrdoCheckConfig(), SrdoSendGfc(), SrdoGetState(),
SrdoSetState(), SrdoGetCommuParam().

2.12.1 Function SrdoStaticDefineVarFields

Syntax:

#include <srdo.h>

tCopKernel PUBLIC SrdoStaticDefineVarFields(MCO_DECL_INSTANCE_PTR_

 WORD wCommuIndex_p,

 void MEM* pNormalData_p,

 void MEM* pInversData_p);

Parameter:

MCO_DECL_INSTANCE_PTR_: Pointer to the instance

wCommuIndex_p: Communication index of the SRDO in the OD

whose variables shall not be defined.

pNormalData_p: Pointer to a coherent variable field that shall be

linked (or mapped) to the plain data of the SRDO.

pInversData_p: Pointer to a coherent variable field that shall be

linked (or mapped) to the bitwise inverted data of
the SRDO.

Return:

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

kCopSrdoErrorMapp The mapping of a SRDO is faulty.

kCopSrdoLengtExceeded The length of the SRDO chosen Mapping exceeds

64 Bit.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 23

Description:

This function defines variable fields for a SRDO. The application only changes the
variables via those variable fields. When sending a SRDO, those data byetes are
copied from the variable field into the two CAN messages. When receiving a SRDO,
the data bytes of the CAN messages are directly copied into the variable fields.
The function verifies, if the stated variable fields correspond with the variables to
which the mapping points in the OD.

Extension of the CANopen user layer

L-1077e_08 © SYS TEC electronic GmbH 2015 24

2.13 Extended CANopen Return codes

The CANopen Return codes are defined in file errordef.h.

Error code Description

kCopSuccessful The function was executed without error.

kCopSrdoNotExist The SRDO chosen does not exist.

kCopSrdoGranularityMismatch The configured SRDO granularity is not supported.

kCopSrdoCfgTimingError The SRDO configuration is faulty (time configuration

SCT – SRVT).

kCopSrdoCfgIdError The SRDO configuration is faulty (COB-Ids).

kCopSrdoCfgCrcError The SRDO configuration is faulty (CRC).

kCopSrdoNmtError The action is not allowed in this NMT state.

kCopSrdoInvalidCfg The action was tried with a faulty SRDO

configuration.

kCopSrdoInvalid The action was tried with a switched off SRDO.

kCopSrdoRxTxConflict It was tried to send a receive SRDO.

kCopSrdoIllegalCanId The CAN Identifier is not valid.

kCopSrdoCanIdAlreadyInUse The CAN Identifier is already being used.

kCopSrdoNotInOrder The two CAN meassages of a SRDO have been

received in the wrong order.

kCopSrdoSctTimeout The SCT of a receive SRDO was exceeded.

kCopSrdoSrvtTimeout The SRVT of a receive SRDO was exceeded.

kCopSrdoCanIdNotValid At least on of the two received CAN Identifier of a

SRDO is faulty.

kCopSrdoDlcNotValid At least on of the two received CAN message

lenghts of the SRDO is faulty.

kCopSrdoErrorMapp The mapping of a SRDO is faulty.

kCopSrdoDataError The data of the CAN messages of a SRDO is not

inverse.

kCopSrdoLengtExceeded The length of the SRDO chosen Mapping exceeds

64 Bit.

kCopSrdoNotHandledInApp The SRDO error reported to the application was not

processed correctly

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 25

3 Reference environment TMDX570LS20SMDK

Texas Instruments provide the development board TMDX570LS20SMDK. It serves as
a reference environment for our safety extension.

For the handling of projects in our extension, there are several things to consider.
This chapter describes all these things to help you get started with the project and the
hardware.

3.1 Installation of the development environment

With the development kit TMDX570LS20SMDK you have received a CD with the
Code Composer Studio development environment. The safety demo was created and
tested with version V4.2.3. Install the development software of this CD and continue
with the installation of the CANopen software.

3.2 Installation of the CANopen software

The CANopen stack SO 877 must be installed first. Start the installation from the SYS
TEC electronic product CD autorun menu. The version of the CANopen stack must
necessarily be greater than or equal to V5.51. In an earlier version the project for the
TMS570LS does not exist. After the welcome screen, accepting the license
agreement and enter the user information you will see the following dialog box for
entering the license key of our CANopen stack:

Enter the purchased license key and press "Next". In the following dialog, select the
demo projects. Also select the software package SO 1059 from the CANopen
extensions.

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 26

Follow any prompts in the setup. After installing the extension of SO 877 SO 1059 will
automatically be installed. You need to enter another license key for SO 1059.

3.3 Import of the safety demo in Code Composer Studio

When the installation of the CANopen stack and the safety expansion is completed,
you will find in C:\systec\cop\target\TMDX570LS20SMDK\no_os\Code Composer
Studio\demo_srdo_actor\ the demo for the actuator on the TMS570LS Development
Kit. Please make sure that the files .ccsproject, .cdtbuild, .cdtproject and. project are
not set to "hidden" in the directory. Otherwise, the project can not be imported to the
Code Composer Studio. Please remove the attribute "hidden" when it should be set.
Now start the Code Composer Studio. You will be prompted to create a workspace.
Close this dialog by entering a directory of your choice.

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 27

In Code Composer Studio call up the menu Window -> Preferences. Expand the

menu on the left part of the window, click General -> Workspace -> Linked

Resources. In the right window use the New button to create a new entry: name
"cop" and location "C:\systec\cop". Please pay attention to the case-sensitive. At the
end the dialog should look at as follows:

In the left part of the window change to C/C++  PathEntry Variables. Add tehere

also a new entry with the button New… and named it cop and add it to

C:\systec\cop.

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 28

Confirm your entry with OK.

Now import the project from the menu File  Import… . Select in the following dialog

under CCS the line Existing CCS/CCE Eclipse Projects and confirm with Next.

In the following dialog select over Browse the path to the demo and then click

Finish.

If all these steps have been carried out without problems, the project can be (re-)
created.

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 29

3.4 Debugging the Demo on the hardware

Now connect the TMS570 Development Kit to the PC. Just use the included USB

cable and plug it on the top board into the USB mini jack labeled XDS100V2. Now
Windows search for the device drivers of the Development Kit. These device drivers
were installed with the installation of the Texas Instruments CD.

After installing the device driver, you can connect the power supply to the
Development Kit. In the scope of delivery of the Development Kit is a 12V power
supply included. Connect it to the jack on the top board next to the USB mini-jack.

With right-click on the project on the left side in the window (in Code Composer

Studio) you can now choose from the context menu Debug As  Debug Session.
On the very first time you must select the type of CPU, choose

TMS570LS20216SZWT. After confirming the Code Composer programs the demo
into the flash of the microcontroller and stops in the main() function.

In the Debug window, you can now control the program execution with the symbols.

Do you want to stop debugging, then simply change the perspective back to C/C++.

Click in the upper right part of the Code Composer Studio on the icon next to debug.

The following Contex Menu C/C++ will be offered.

Now you are back to the Project Explorer of the Code Composer Studio.

The programming of the firmware in the flash takes a long time, first the entire flash is
erased. Therefore, you should change the debug options so that only the flash
sectors will be erased, which are used by the application.

Click with the right mouse button on the project and select the context menu Debug

As -> Debug. In the next dialog switch on the right side of the window, click the tab

sheet Target. Select the line TMS570LS20216SZWT Flash Settings. Now you can

find the Erase Options on the right side. Selct Necessary Sectors Only and press

Apply.

Reference environment TMDX570LS20SMDK

L-1077e_08 © SYS TEC electronic GmbH 2015 30

Glossary

L-1077e_08 © SYS TEC electronic GmbH 2015 31

4 Glossary

BOM Bill of Material
CAN Controller Area Network (according to ISO 11898-1:2003 and ISO

11898-2:2003)
CCM CANopen Controlling Module
CiA CAN in Automation e.V.
COB Communication Object
CPU Central Processing Unit
CRC Cyclic redundancy check
DIN Deutsches Institut für Normung e.V.
DLL Data Link Layer (layer 2 according to OSI model)
EDS Electronic Data Sheet
EEPROM Electrically Erasable Programmable Read-Only Memory
EN European Norm
EUC Equipment under control
e.V. eingetragener Verein
GFC Global Fail Command, according to EN 50325-5:2010
GmbH Gesellschaft mit beschränkter Haftung
GND Ground
HW Hardware
ID Identifier
IEC International Electro technical Commission
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
JTAG Joint Test Action Group
kiB Kilobyte
LSB Least Significant Bit
MiB Mega byte
ms Millisecond
MSB Most Significant Bit
nc not connected
NMT Network Management
NSR Non-safety-related
OD Object Dictionary
OS Operating System
OSI Open Systems Interconnection model according to ISO 7498-1
PCB Printed Circuit Board
PDF Portable Document Format
PDO Process Data Object
PhL Physical Layer (layer 1 according to OSI model)
PHY Physical layer in OSI model
RAM Random-Access Memory
ro read-only
ROM Read-Only Memory
RPDO Receive PDO
RSRDO Receive safety-related data object, according to EN 50325-5:2010
RT Real Time
RTC Real Time Clock

Glossary

L-1077e_08 © SYS TEC electronic GmbH 2015 32

rw read-write
RX Receive
SCL Safety Communication Layer
SCT Safeguard Cycle Time, according to EN 50325-5:2010
SDO Service Data Object
sec Seconds
SIL Safety integrity level
SR Safety-related
SRAM Static RAM
SRDO Safety-related data object, according to EN 50325-5:2010
SRVT Safety-related validation time, according to EN 50325-5:2010
SW Software
tbd to be defined
TPDO Transmit PDO
TSRDO Transmit safety-related data object, according to EN 50325-5:2010
TTL Transistor-Transistor-Logic
TX Transmit
u.a. unter anderem
UART Universal Asynchronous Receiver Transmitter
UTC Coordinated Universal Time

Index

L-1077e_08 © SYS TEC electronic GmbH 2015 33

5 Index

callback function 29
CANopen safety .. 26
CANopen stack ... 26
CCM Layer .. 19
CcmProcess ... 14
Certification...9
Checksum... 21
Code Composer Studio 27
Configuration .. 13

SRDO_ALLOW_GAPS_IN_OD 13
SRDO_CHECK_SRVT_BEFORE_1STRX

 ... 14
SRDO_GRANULARITY 13
SRDO_USE_DUMMY_MAPPING.......... 13
SRDO_USE_GFC 14
SRDO_USE_PROGMONITOR 14
SRDO_USE_STATIC_MAPPING 13

CRC.. 21
Debugging .. 29
Function

AppGfcEvent...1
AppProgMonEvent2
AppSrdoError .. 31
AppSrdoEvent 29
CcmCheckSrdoConfig 21
CcmDefineVarTab() 17
CcmGetSrdoParam 25
CcmGetSrdoState 23
CcmInitCANOpen() 19
CcmProcess() 19
CcmSendGfc .. 22
CcmSetSrdoState 24
CcmStaticDefineSrdoVarField() 17
CcmStaticDefineSrdoVarFields 27
CobProcessReceiveQueue 14
SrdoAddInstance 10
SrdoCheckConfig 15
SrdoDeleteInstance 11
SrdoGetCommuParam 19
SrdoGetMappParam 20
SrdoGetState .. 17
SrdoInit ...9
SrdoNmtEvent 12
SrdoProcess ... 14

SrdoSend ... 13
SrdoSendGfc .. 16
SrdoSetState .. 18
SrdoStaticDefineVarFields 22

Function
SrdoCalcSrdoCrc 21

GFC 6, 7, 8, 22, 16
Installation

CANopen .. 25
Limitations hardware 11
Limitations software 11
macros ... 5
monitoring .. 16
NMT event .. 12
OBD_BEGIN_SRDO_CRC 6
OBD_BEGIN_SRDO_MAPP 5
OBD_CREATE_SRDO_CFG_VALID 6
OBD_CREATE_SRDO_COMMU 5
OBD_CREATE_SRDO_GFC_PARAM 5
OBD_END_SRDO_CRC 6
OBD_END_SRDO_MAPP 5
OBD_SUBINDEX_SRDO_CRC 6
OBD_SUBINDEX_SRDO_MAPP 5
Object dictionary ... 5
receiving ... 15
reference environment 25
Restrictions static mapping 17
Return codes .. 24
Safety-CPU .. 9
Sending .. 15
software structure 12
SRDO

Initialization ... 9
receiving ... 29
sending ... 19
transmission 19, 29
Transmission .. 13

SRDOSTC .. 17
static mapping .. 17
Structure

tSrdoInitParam .. 9
tSrdoMappParam 26

TMDX570LS20SMDK 25
Watchdog ... 10

Suggestions for Improvements

L-1077e_08 © SYS TEC electronic GmbH 2015

Document: CiA 304 Safety Framework

Document number: L-1077e_08, Edition September 2015

How would you improve this manual?

Have you found any mistake in this manual? Page

Sent in by:

Customer number:

Name:

Company:

Address:

Please submit to: SYS TEC electronic GmbH
Am Windrad 2
D-08468 Heinsdorfergrund
GERMANY
Fax : +49 (0) 3765 / 38600-4100

Suggestions for Improvements

Published by
© SYS TEC electronic GmbH 2015 Best.-Nr. L-1077e_08

Printed in Germany

	References
	Introduction
	1 Basics “CANopen Safety”
	1.1 SRDO – Safety Related Data Object
	1.1.1 Communication parameters of a SRDO
	1.1.2 Mapping parameter of a SRDO
	1.1.3 CRC of a SRDO

	1.2 Configuration Valid
	1.3 Global Fail-Safe Command GFC
	1.4 Predefined Connection Set
	1.5 Overview safety-targeted entries in the object directory
	1.6 Certification

	2 Extension of the CANopen user layer
	2.1 Limitations of the hardware
	2.2 Limitations of the software
	2.3 Software structure
	2.4 Configuration of the software
	2.5 Function of the SRDO module
	2.5.1 Sending SRDOs
	2.5.2 Receiving SRDOs
	2.5.3 Sending and receipt signaling of SRDOs
	2.5.4 Logical monitoring of program run of the SRDO module

	2.6 Function of the SRDOSTC module
	2.7 General program run
	2.8 Extension of the CCM layer
	2.8.1 Function CcmSendSrdo
	2.8.2 Function CcmCheckSrdoConfig
	2.8.3 Function CcmSendGfc
	2.8.4 Function CcmGetSrdoState
	2.8.5 Function CcmSetSrdoState
	2.8.6 Function CcmGetSrdoParam
	2.8.7 Function CcmStaticDefineSrdoVarFields
	2.8.8 Function CcmCalcSrdoCrc

	2.9 Functions in the application
	2.9.1 Function AppSrdoEvent
	2.9.2 Function AppSrdoError
	2.9.3 Function AppGfcEvent
	2.9.4 Function AppProgMonEvent
	2.9.5 Function AppCbNmtEvent

	2.10 Object directory
	2.10.1 Macros for safety objects
	2.10.2 Advice for macros

	2.11 Function descriptions of the SRDO module
	2.11.1 Function SrdoInit
	2.11.2 Function SrdoAddInstance
	2.11.3 Function SrdoDeleteInstance
	2.11.4 Function SrdoNmtEvent
	2.11.5 Function SrdoSend
	2.11.6 Function SrdoProcess
	2.11.7 Function SrdoCheckConfig
	2.11.8 Function SrdoSendGfc
	2.11.9 Function SrdoGetState
	2.11.10 Function SrdoSetState
	2.11.11 Function SrdoGetCommuParam
	2.11.12 Function SrdoGetMappParam
	2.11.13 Function SrdoCalcSrdoCrc

	2.12 Function descriptions of the SRDOSTC module
	2.12.1 Function SrdoStaticDefineVarFields

	2.13 Extended CANopen Return codes

	3 Reference environment TMDX570LS20SMDK
	3.1 Installation of the development environment
	3.2 Installation of the CANopen software
	3.3 Import of the safety demo in Code Composer Studio
	3.4 Debugging the Demo on the hardware

	4 Glossary
	5 Index

