5YS TEC

ELECTRONIC

CANopen User Manual

Software Manual

Edition September 2015

system house for distributed automation

CANopen Software

In this manual are descriptions for copyrighted products, which are not explicitly indicated
as such. The absence of the trademark ® and copyright © symbols does not infer that a
product is not protected. Additionally, registered patents and trademarks are similarly not
expressly indicated in this manual

The information in this document has been carefully checked and is believed to be entirely
reliable. However, SYS TEC electronic GmbH assumes no responsibility for any
inaccuracies. SYS TEC electronic GmbH neither gives any guarantee nor accepts any
liability whatsoever for consequential damages resulting from the use of this manual or its
associated product. SYS TEC electronic GmbH reserves the right to alter the information
contained herein without prior notification and accepts no responsibility for any damages,
which might result.

Additionally, SYS TEC electronic GmbH offers no guarantee nor accepts any liability for
damages arising from the improper usage or improper installation of the hardware or
software. SYS TEC electronic GmbH further reserves the right to alter the layout and/or
design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2015 SYS TEC electronic GmbH All Rights - including those of translation,
reprint, broadcast, photomechanical or similar reproduction and storage or processing in
computer systems, in whole or in part - are reserved. No reproduction may occur without
the express written consent from SYS TEC electronic GmbH.

Directly Your local distributor
Address: SYS TEC electronic GmbH

Am Windrad 2

D-08468 Heinsdorfergrund

GERMANY

: You find alist of our distributors

Ordering +49 (0) 3765/ 38600-2110 under
Information: info@systec-electronic.com
Technical +49 (0) 3765 / 38600-2140 http://www.systec-
Support: support@systec-electronic.com electronic.com/distributors
Fax: +49 (0) 3765 / 38600-4100
Web Site: http://www.systec-electronic.com

14" Edition September 2015

© SYS TEC electronic GmbH 2015 L-1020e_14

http://www.systec-electronic.com/distributors
http://www.systec-electronic.com/distributors
mailto:info@systec-electronic.de
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

Contents

Table of Contents

PREFACE

1

11
1.2
121
1.2.2
1.2.1
1.2.2
123
124
1.3
1.4
15
1.6
1.7
1.8

2

2.1
211
2.1.2
2.1.3
2.2
2.3
2.4
24.1
2.5
25.1
2.5.2
2.6
2.6.1
2.6.2
2.7
27.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7
2.7.8
2.7.9
2.7.10
2.7.11
2.7.12
2.7.13
2.7.14
2.7.15
2.7.16
2.7.17
2.7.18
2.7.19
2.7.20
2.7.21

7
CANOPEN FUNAAMENTAIS ...ttt bbbt e e s b e e e bbbt e e bbb e e sttt e e sbnr e e e aabeeeaas 9
What IS CANOPEN? .eveeeiieieeeiee et e e e e e e e e e e e e e e e e e e s e e aanananns 10
Communication 0bJects (COB)........ooi ittt 13
Process data 0bJECt (PDO) ...uuuuiiiiiiiiiiiiieeiee e e e e e e 13
Service data ObJECt (SDO) ...coeiiiiiiiiiei e 19
Synchronization 0bJECE (SYNC)......uviiiiiiiiiiiiie e 21
Time stamp ObJECE (TIME)coiiiiiiii i e e 21
Emergency 0bJeCt (EMCY)......uiiiiiiiiiiiiieee ettt 21
Layer Setting SErVICE (LSS)uuuuiiiiiiiiiiiiieie e e e e e e e e e e 22
Network Management (NMT) ... e e 25
CANopen communication Profile..........ccccccciiiiiiiiiiieee e 29
TransSMISSION PrOtOCOISceviiiiiiiiiee ettt e e 30
Object diCtioNArY (OD)ueiiieiiiiiiieeee ettt 30
Error handling and rePOItiNgeeeeeeeiiiiieaeeeee e 31
Telegram table (pre-defined coNNECtion SEt).........cccuvvevveiiiiiiiiiieee e 32
(07 N\ (o] o =T g WU L= G I T PP OUPRTORPPRN 33
SOFtWAIE STIUCLUIEceeiiiiiieeie ettt e e e e e e e e e e e e e e e e 33
CANOPEN STACK ...ttt e e et e e e aabneee s 34
Hardware-SpeCifiC [AYEr...........uuuiiiiiiiiiiiiiie e 36
ApPlicatioN-SPECITIC TAYEL........eiiiiiieeiie e 36
DT To (0] VA=) 1 U o1 (1] (PR 39
DAt STIUCTUINES.... ettt e e e e e e e e eerenbaa s 40
1@ o] 1=Tox o [To3 110 o =T oY A0 EEEEEUPPRRR 43
Example obJeCt diCHONAIYuuiiiiiiiiiiiieee e 43
Instanceability of the CANOPEN layer.........oovviiiiiiiiiie e 45
Using the instance handle...........cccoiiiiiiiiiiiici e 46
USING INSTANCE POINTETS. ...ceiiiiiiiiiiieeee ittt e e e e snbreeeeee e 46
Hints for creating an appliCation............ccoveeeeiiiiiiiii e 47
Selecting the required modules and configurationcccccccveeeeeeeeiiiiiiniiiens 47
Sequence of a CANopen appliCationccccuveriiiiiiiiiiiieiireere e 49
Description of CCM layer fuNCLONScoooiiiiiiiii e 60
Description of module CCMMAINeeiiiiiiiiiiiie e 60
Description of Module CCMSAOC........cciiiiiiiiiiii e 78
Description of module CCMDPAOcccooiiiiiiiiiiiiiie e 89
Description of Module CCMOD)uvviiiiiiiiiiiccee e 91
Description of MOdule CCMLQSeiiiiiiiiiiiaaaeee e 93
Description of Module CCMSLOIEovvvviiieeee e 95
Description of module CecmNmtm and CCmMNMEM..........uuiiiiiiiiiiiiiiiiiiieeeeeeee, 103
Description of module CCMSNPAOccooeiiiiiiiiiiceeree e 109
Description of Module CCMSYNCccoiiiiiiiiiiiiii e 109
Description of module CCMSYNCEX.......cccoiiiiiiiiiiiiiiiie e 113
Description of Module CCMEMCCccovveeieiiiiic e 113
Description of module CCMEMCPvveiiiiiiiiiiiiiee e 117
Description of module CCMHDC.........oooviieiiiii e 121
Description of module CCMHDPoooiiiiii i 125
Description of module TgtCav and CavFile..........ccocviiieiiiiiiiiiiee e 125
Description of module CCMBOOL............cooiiiiiiiiii e 134
Description of module CCMFIOAL...........ccooiiiiiiiiiiiiiiie e 135
Description of module CCMSIPAOcooeiiiiiiiiicree e, 136
Description of module CCM303c.uviiiiiiiiiiiiiee e 138
Description of MOdule CCMLSScovvviiiiieeeiecc e 144
Communication parameters and process variablesccccccoiiiiiiiiiiiiines 153

© SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Software

2.8
28.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9
2.8.10
2.8.11
2.8.12
2.8.13
29
29.1
29.2
2.10
2.101
2.10.2
2.10.3
211
2111
2.11.2
2.12
2121
2.12.2
2.12.3
2124

3

3.1
3.2
3.3
3.4
34.1
3.4.2
3.4.3
3.5
3.6
3.7

~N o G

Description of the CANopen stack funCtionseeeveviviiiiiiieeec s 155
Description of module SDOS ... 155
Description of module SDOCooiiiiiiiiiiiiee e 171
Description of Module PDO........coooiiiiiiii e 186
Description of module PDOSTC.......ccuiiiiiiiiiiieiiiiiiee e 198
Description of Module OBD............coooiiiiiiieeer e 200
Description of Module COB............uuiiiiiiii e 212
Description of Module NMT ... 217
Description of module NMTS ... 219
Description of module NMTM........uiiiiiiiiie e 221
Description of module EMCC ... 225
EMCP MOAUIE ...ttt e e e e e e e e e e e e e e e s e s nnnnes 228
Description of Module HBCoo oo 231
Description of Module HBPuuiiiiiiiiiie e 234
Add-on modules for the CANopen protocol stackcooeveccciivviiinninnnne. 237
Description of module MPDOooiiiiiiiiiit et 237
Description of module CCMMPAO.........ccccoeiiiiiiiiiiiieeeee e 239
Meaning of return values and abort COAesuuuuiiiiiiiiiiiiiiiiii e 241
CANOPEN FEIUIMN COUBS.....uitiiiiie ettt et 241
SDO @DOM COUES. ... ettt e e e e e e neees 248
EMEIgENCY EITON COURSuuiiiiiiiiiiiiiiie ettt e e 249
Configuration and SCaliNGeevviiiiiiiieiieee e 250
Configuration of the CANOPEN StACKc.uviieiiiiiiiiiieeee e 250
Configuration of the Object DICHONArY............cveeiiiiiiiiieee e 292
Characteristics of Hardware, OS and IDESccccccuiiiiiiiiiiiiiiiecceeeeeee e 293
Selecting the address space for data Storagecccccuvvvvviviiiiiiiiiiiiiiiieeeeeeenn, 293
Operating SyStemM PXROScooviiiiiiiiiiee s e e 293
LinuX OPerating SYSIEIMcuiiiiiiiiiiiiee ittt e e 296
Windows Operating SYSEMcccuuuiiiiiiiiieiirereeereeeee e e e e e e e e s ss s ssseeeeeraereeeeeees 301
Hints for Porting to Other Target Platformscccociiiiiiiiiiiii 312
Global definition file GLOBAL.Hcooeeieeeiieiiee e 313
Selecting the CAN IVeeiiiiiiiie e 315
CAN Dbit rate definitioneeeeeiiiiiii e 317
Target SPECITIC SEHINGSuuviiiiiiiiiiiiiiececee e e e e e 318
Hardware properties definition ... 319
Memory management definition - standard functions..............cccccccoooeiiiiiins 319
Definition of target specific funNCONS...........c.cuuiiiiiiiii e 319
CPU variable byte order definition............oocvveieiiiiiiiiie e 321
Typical configuration of a CANopen slaveccocccciiiiiiiiiiiecerccecee e, 321
Typical configuration of & CANOPEN MASLENccceiiiiiiiiieieiiiiiiiee e 323
Notes 0N CANOPEN COITIFICALIONuiiiiiiieie ettt e st e b e e e tb e e st e e e e sbareeeanbeeeaans 325
GlOSSANY ..tttk etttk bR R R e Rt Rttt e b et e et 327

Revision History CANopen V5.xx

© SYS TEC electronic GmbH 2015 L-1020e_14

Contents

Index of figures and tables

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Figure 31:

Figure 32:
Figure 33:
Figure 34:
Figure 35:

Overview of the CANOPEN CONCEPL ...ceeeiieiiiiieiiiiiiete e 10
Communication model for PDOSccccciiiiiiiiiiiiieeeeeeee e e e 13
Mapping of object dictionary entries into @ PDO..........cccccoeeeeiiiiiiiiiniiie 14
Data transmission of object data via SDOcccevviiiiiiiieeieeeeeieeeeiee 19
Structure of an eMergenCy MESSAQE.......ccovvvvvrvriuiiiiieie e e e e eeees 22
“switch mode global” SEervice ... 23
“Configure bit timing” SEIVICEccvviviiiiee e 23
“Response to Configure bit timing” Service..........ccocuviviiiiiniiiiiiieeiiie. 23
“Activate bit iming” SErviCe.........ccooiuiiiiiiiiii 23
“Configure NOde ID” SEIVICEcccuiiiiiiieii i 23
Response to “Configure Node ID” ServiCe.........ccccceeiiiiiiiiieiiiiiiieee e, 24
NMT state machine for CANOPEN dEVICES.........euuieeiiiiiiiiiiiaiiiiiiiiee 25
Response of the NMT slave to a node guarding remote frame 26
Response from the NMT slave to a life guarding remote frame 27
Heartbeat MeSSagecooo i 27
Software StrUCIUIE OVEIVIEWuvviiiieiiiiiiiiee et e e 34
Data exchange between application and object dictionary........................ 42
Sequence of a typical CANopen application...........ccccceeviiiiieeieeiiiiiiieeeene 50
NMT state machine according to CiA 301 V4.02......cccoovveeeeeeeiiiiiiiiieieiees 55
Call sequence of the Store Callback-Function for an OD-area................ 101
Blinking cycles according to CiA 303-3 (time in ms)...........ccoeeeeevieeiinnns 138
Sequence for NMT events in the NMT callback function........................ 154
SDO SEIVEI tADIE ...t 156
Interfaces for modifying communication parameters of a SDO server 158
Initiating an SDO dOWNIOATcceiiiiiiiiiiiiee et 161
SDO ClIENTTADIE ...eviiieieeicieiee e 172
Interface for changing SDO client parameters.........ccccoovvveveieniiiiieeeeenns 174
Initiating an SDO download...........cccccvviiiiiiiiiiiireeer e 175
PDO mapping example of the variables at static PDO mapping 198
Calling sequence of events for the object callback function during a SDO
BICCESS ... it ie ettt e e e e ettt e e e e et e e e e e b e b e e e e et et e eeer e e aeaas 211
Calling sequence of Events for the object callback function during an
access created from the application..............cc..ooo i, 211
Call Sequence of the CCM Functions with PXROScccccccvvvvinnnnnnnnn. 295
Structure of CANopen Software under LiNUX...........uvvvvveeeiierieiieneeeeeeeennn, 296
Call Sequence of the CCM Functions with LiNUX............ccccovvevieiiiiiiennen, 298
CANopen Software structure under Windowsceeveeeeevieiiieneeeeeeennnn, 302

© SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Software

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:

Example for mapping parameters for the first TPDOcccvvvvvvveeeeeeennnnnnn. 14
Communication parameter for the first TPDO............cccoooeiiiiiiiiiiiiis 15
Structure of 2 COB-ID fOr PDOS........uuuuiiiiiiiiiiirieiieeeeeee e 16
Transmission type fOr TPDOS.ttt 18
Transmission type fOr RPDOScoiiiiiiiiiiiieeiiiiieieee e 18
S B I (= 101y (=T g 1Y 1= 20
Baud rate table according to CiA 305c..uviiiieiiiiiiiiiee e 24
Node state of a CANOPEN EVICEcoeeiieieiiiiirieeeee e e e 26
Heartbeat consumer configuration..............cccooiiiiiiiiiiiiie e 28
Structure of an object dictionary entryccccceeeeiiiieeee e, 30
pre-defined master/slave connection set [1]coooiiiiiiiiiiiiiiiiiiieeeeeeeene, 32
CANOpPEN StaCK MOAUIES ...t 35
CCM IAYET fl@S ..o 38
part of an object dictionary as example ..o, 44
Meaning of instance macros as handleccccccvviviiiieiieiiiieeceeeee e, 46
Meaning of Instance Macros as POINTET.......ccccuuuviiiiiiiiiieiieee e 46
Guide for selecting the required software modules................ccoeeeeciinnnnns 48
NMT state machine explanation (list of events and commands)................ 55
Supported communication objects in various NMT states [4]ccccvvveee 56
Parameters of the structure tCcminitParam...........cccccveeiiiiiiiiiee i, 64
Parameters of the structure tVarParamcccccvveiiiiiiiiiiiiiiinieeeeeeeeeee, 68
Description of the argument pointers based on parameter ErrorCode_p ..72
Parameters of the structure tINMtStateError ..., 73
Parameters of the structure tPAOEITOr........cccccvviiiiiiiiiiieieeeecee e 73
Parameters of the structure tSdocParamccccuveieiii, 80
Parameters of the structure tSdocTransferParamccccccccvvvveeeeennnnnnnnn. 83
Possible SDO transfer status values in tSdocStateccccvvveviiiiiieennn. 85
Parameter of Structure tSdocNetworkParam.............eeeeveviiiiiiiiininennnnnnnnn, 88
Parameters of the structure tPdoParamcccccvveiieiiiiiiiiiie e, 90
Events for the Lifeguard callback functioncccceeeeiinn. 95
Assignment of sub-indexes in object OX1010..........ccccevviuviiieeeriiiiiiieeeennns 98
Parameters of the structure tObdCbStoreParam..............eeeveeviiiiiiinnnnnnn. 101
Tasks of the callback function CcmCbStoreLoadObject.............ccveeeeeenns 102
Master callback function EVENTS..........ccccoviiiiiiiieiiiiie e 107
Parameters of structure tEmcParamccccociiiiiiiiiiiiiiie e 116
Events for callback function CcmCbEmMpCEveNt.........ccccvvvvvvvvvveeieeneeeennn. 119
Parameters of the structure tHbdProdParam.............ccceeviiiiiiiiiiniinnnnnnnn. 122
Event overview and description for heartbeat consumercc............ 124
Return codes for function TgtCavGetAttrib...........ccccvviiiiiiiii, 132
Equivalent function for static PDO Mappingccccveeveeiiniiieeeeeniniiieeenn. 136
Parameter of the structure tPdoStaticParamccceeveiiieiiiinn.. 137
States of the green LED according to CiA 303-3........ccocveeiiiiiiiieeeeene 139
States of the red LED according to CiA 303-3...........ccooiiiiiccevnniiiniinnne, 139
Values for parameter State_p of function Ccm303SetRunState.............. 141
Values for parameter State_p of function Ccm303SetErrorState 142
Configuration settings for LSS master and slave............ccccoeeveieeeviieinninn, 144
values defined for LSS mode parameteroccveeeeeeiiiiieieeeeniniieieeeeens 145
Pre-defined values for the service flags of the LSS master.................... 148
LSS service commands for ,service inquire identify”cccccccoee 148
Parameter of Structure tLSSCbhParam...........cccccevviiiiiiiie i, 151
Meaning Of LSS-EVENTS.........ccoiiiiiiiiiiieiiiiii et 152
Effects of object properties on the SDO transferc.ccoocvvveeiiiiiiinneenn. 159
Denial of SDO download initiation at the SDO server..........cccccccvveeeeeenn.. 160
Denial of SDO Segment download at the SDO serverccccccvvveeeeenn... 161
Denial of SDO upload initiation at the SDO SErvercccccceeeeeeeieeeeeennn.. 162

© SYS TEC electronic GmbH 2015 L-1020e_14

Contents

Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:

Denial of an SDO segment download at the SDO server.............cccuues 162
Selection of the CRC-calculation algorithm ..., 163
Parameters of structure tSAosInitParam...........ccveeeeeiiiiiiieeee e 166
Parameters of structure tSAOSPAaramccccccciiiiiiiniiiiiiees 169
Rejecting the download response by the SDO client.................ccceeneees 174
Rejecting an upload segment by the SDO clientoeoeeiiieiinnns 175
Parameters of the structure tSdocInitParam...........cccccooeuiiiiiiniiiiiiennenne 177
NMT events processed by SAoCNMtEvVENt.........coovvvvviiieeeiin, 179
Parameters for the structure tSdocCbFinishParam....................ccccees 182
PDO transmission types and events for sending PDOSccccevvnens 187
Events for calling a PDO callback function (Receipt)ooooeiiiiinnns 189
Events for calling a PDO callback function (Sending)ccccoccvvveeeenne 189
Partitions of the object dictionary..........cccccueeieiiiiiiiiiiee e, 203
Executable instructions to the object dictionaryccuveeeeiiiiiiieeneenns 204
CANOPEN NOAE SLALES ...cevviiiieiieeeee e e e e e e e e e 206
Meaning of the parameter structure tObdCbParam..................ccccciiees 208
Events of the callback function for object accesscccccevviviiiiinnnnns 209
Meaning of the parameter of structure tObdVStringDomain.................... 209
Calculating the number of communication objectsccccvevveiiiiiiiiennen, 212
Parameters of the structure tCobParam...........ccccccceiiiiii e 213
Meaning of the communication Object tyPes..........cccceviviririeeeiiiiiiieeeeee 214
Meaning of the NMT COMMANSuuvriiiiiiiiiiiirierieeeee e 218
Meaning of the tNmtmSlaveParam structure parameters............ccccceeeuee 222
Meaning of the tNmtmSlavelnfo structure parameterscccccoeeeeeenne 224
List of available CANopen add-on modules..........cccccceeeeiiiiiiiiiiiiiiiiiens 237
Parameters of structure tMPAOPAramccoccuvveeeeiiiiiiieieien e 238
SDO @DOM COUBS ...uuiiiiiiiiiiiiiiie ettt sebaaeee s 248
Emergency error codes according to [4].......coovvmiieeeiiiiiiiieeee e 249
Function prefix for the CAN driVercccveiiiiiiiiiiiiiieeeeeee e, 254
Properties for executing process fUNCLONS ... 276
Setting time monitoring for the PDO module ..., 279
Additional parameters in the structure tCcminitParamccceeeeeeeeen. 294
CCM Thread Events under LINUXcoooiiciimiiniiiiiiiiieeeeeeeeeeeeeeeeeee e e 301
Thread Events for CANopen under Windows.............coooeeeevnviinvnenneeenen. 310
Memory type definition for various target systemsccccoeevviieiinnnns 314
List of currently available CAN driVEIS.........uuveiiiiiiiiiiieeeeeee s 317
Bit rate configuration file OVEIVIEWeeeeiiiiiiiiiiiiiiiaia s 318
List of application-Specific MACIOS...........ueviieiiiiiiiiiee e 319
List of target-specific fUNCHONSuuuiiiiiiiiiii s 320

© SYS TEC electronic GmbH 2015 L-1020e_14

Preface

PREFACE

This manual describes the application layer as well as the supported communication
objects of the CANopen stack for programmable CANopen devices. Device profiles are
profile-specific and described in a separate manual.

Section 1 Provides general information on CANopen-related terms and concepts.

Section 2 Describes the implementation of the CANopen stack protocol by
SYS TEC electronic GmbH and gives detailed information about the user
functions, their interfaces and data structures.

Section 3 Provides specific information on how to use and implement the CANopen
stack in a user application with regard to the user hardware, the operating
system and development environment.

© SYS TEC electronic GmbH 2015 L-1020e_14 7

CANopen Software

8 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1 CANopen Fundamentals

CANopen is a profile family for industrial communication with distributed automation control
devices based on the CAN-bus. It was developed by the manufacturer and users
association CiAl and has been standardized since 2002 as CENELEC EN 50325-4.
CANopen has established itself in a number of areas of industrial communication (e.g.
mechanical engineering, drive systems and components, medical devices, building
automation, vehicle construction, etc.). The fundamental communications mechanisms are
described in so-called communication profiles.

Frameworks complement the communication profile for specific applications. This is how
frameworks are defined for safety-compliant data transfer ("CANopen Safety") or for
programmable devices (e.g. PLCs). The so-called object dictionary is the central element
of every CANopen device and describes the device's functionality.

1. CAN in Automation e.V. Founded in March 1992, CiA provides technical, product and

marketing information with the aim of fostering Controller Area Network’s image and
providing a path for future developments of the CAN protocol.

© SYS TEC electronic GmbH 2015 L-1020e_14 9

CANopen Software

1.1 What is CANopen?

CANopen defines the application layer, a communication profile as well as various
application profiles.

Device Profile| | Device Profile
1/0 Module Drives secccccce Application Profile
CiA DSP-401| | CiA DSP-402

|

Application Layer
CANopen-API CiA 301
Framework
Object Dictionary CiA 302
CiA 304

-~

v

Communication Profile

Communication Objects GiA 301
Framework

|PDO| |SDO| | SYNC | |Emergency CiA 302

CiA 304

|

CAN Bus

Figure 1. Overview of the CANopen concept

The application layer! provides confirmed and unconfirmed services to the application and
defines the communication objects. Services are used to, for example, request data from
a server.

Communication objects are used for data exchange. Communication objects are available
for exchanging process and service data, for process or system time synchronization, for
error state supervision as well as for control and monitoring of node states. These objects
are defined by their structure, transmission types and their CAN identifier. The specific
parameters of a communication object, such as the CAN identifier used for data
transmission, the transmission type2 of a message, the inhibit time3 or event time4 are
specified by the communication profile.

The order of and the rules for a data transmission between communication objects are
described by protocols (., download, ..).

1. The interface to the application (API) is not defined by the application layer and
depends on the manufacturer-specific implementation.

2: The transmission type defines the properties for initiating a transmission. Available
transmission types are cyclic and acyclic as well as synchronous and asynchronous.

3: The inhibit time specifies the time that must elapse between two message
transmission before a new transmission can be initiated.

4. An asynchronous TPDO (transmit PDO) will be sent after the event time has elapsed.

10 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

The application layer and the communication objects do not define the interpretation of the
transmitted data, however. Interpretation of these data is defined in the application profile
respectively. the device profiles. Device profiles are available for different device classes,
such as I/O modules (CiA 401), drives (CiA 402) and human-machine interfaces (HMI)
(CiA 403). The standardization of device-specific data interpretation allows the building of
exchangeable devices.

Each CANopen device features an object dictionary (OD) as the main data structure. The
object dictionary serves as the primary data exchange medium between the application
and the CAN bus communication. Access to the OD entries is possible from both sides,
from the application as well as from the CAN bus via specific messages. These OD entries
can be considered as variables or fields from the programmer’s point of view.

Each entry in the object dictionary has an index and a sub-index assigned to it. Using this
index structure, it is possible to clearly address an OD entry. The CANopen stack provides
API functions? to define entries in the object dictionary as well as to read or write these
entries. With the help of communication objects it is also possible to access the object
dictionary over the CAN bus.

Properties have to be defined for each entry in the object dictionary. These properties
include the data type (UNSIGNEDS8, and various attributes such as the access rights (read-
only, write-only, , the transmission of the data in a PDO?2 or supervision of the value range
via its limiting values3.

The application layer and the communication profile are thoroughly described by the CiA
DS301 specification. Use of CANopen frameworks extensions of this standard is described
for specific applications. These frameworks define further rules as well as specific
communication objects. For example, the CiA DS301 defines network management objects
(node guarding, life guarding). Use of these objects for supervision of CANopen devices is
described by the framework.

The following CANopen frameworks are available:
Framework for programmable CANopen devices (CiA 302)
Framework for safety-relevant data transmission (CiA 304)

Definition of the API functions is manufacturer-specific.
Entries can be ,mapped* into a PDO for transmission as process data object.

Only such values are written to an entry if they are within the limiting value ranges. All
other values will not be accepted.

© SYS TEC electronic GmbH 2015 L-1020e_14 11

CANopen Software

Summary of advantages using CANopen:
vendor-independent standards
open structure

real-time communication for process data without protocol overhead

modular, scalable structure that can be tailored to the needs of the user within
a wide range of networked automation control systems

comprehensive functionality for communication and network supervision tasks

support of system integrators by configuration and supervision tools

profiles oriented on Interbus-S, Profibus and MMS

CANopen provides the following possibilities for auto configuration of CAN
networks:

easy and unified access to all device parameters
cyclic and event-driven data transfer
device synchronization especially for multi-device systems

SYS TEC electronic GmbH offers the following products and services to support customers
in the design of their CANopen applications:

Implementation of own CANopen master and slave nodes
Independent consultancy

Development of hardware and software

System integration and certification support

CAN / CANopen seminars

The engineers of SYS TEC electronic GmbH have many years of experience with a variety
of CAN applications and participate in the Special Interest Group SiG "Programmable
Devices" and "CANopen Safety".

12 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.2 Communication objects (COB)

Communication objects 1 (COB) are used for transmission of data. The communication
profile defines the parameters of individual communication objects.

Depending on the communication objects, different transmission types and protocols are
available. Connection of communication objects over the CAN bus is accomplished via
CAN identifiers. The recipient of a communication object must have the same COB
identifier (COB-ID, CAN identifier) as the sender of this message. Communication objects
for unconfirming protocols (PDO, Emergency) possess one COB identifier (COB-ID, CAN
identifier) while communication objects for confirming protocols (SDO) possess two COB
identifiers (one identifier each direction).

1.2.1 Process data object (PDO)

Process data objects (PDO) are especially suited for fast transmission of process data. The
communication model for PDOs defines one PDO producer and one or multiple PDO
consumers.

> PDO-Consumerl

PDO-Consumer2

\ 4

PDO-Producer

PDO-Consumer3

A 4

PDO-Consumer4

\4

Figure 2. Communication model for PDOs

The reception of a PDO is not acknowledged by the PDO consumer. The PDO producer
transmits a PDO, such PDOs are called transmit PDOs (TPDOs). The PDO consumer
receives a PDO, consequently such PDOs are called receive PDOs (RPDOSs). Successful
reception of a PDO is not acknowledged. Multiple PDO consumers may exist for one PDO
producer. A PDO producer is assigned to one or multiple PDO consumers with the help of

its COB-ID. This is also called PDO linking?.

1. CANopen defines different communication objects that are specifically tailored to
various tasks and requirements. For example, process data are transmitted without
protocol overhead in a single CAN message. Service data objects use additional
security mechanisms for supervision of the data transfer between two nodes. The data
contents of such an (SDO) object can be transmitted via multiple CAN messages.

2: PDO linking can be supported by graphical configuration tools especially for more
complex applications requiring many connections between TPDOs and RPDOs.

© SYS TEC electronic GmbH 2015 L-1020e_14 13

CANopen Software

Transmission of a PDO is triggered by an event. Such events can be the change of a
variable that is represented by this PDO, expiration of a time or receipt of a certain
message. Process data is transmitted without protocol overhead directly in a single CAN
message. The length of a PDO can be between 0 to 8 data bytes.

PDOs are described by their mapping parameters and their communication parameters.
The maximum number of TPDOs as well as RPDOs that can be defined is 512. A simple
CANopen device typically supports 4 PDOs. The actual number of PDOs is defined by the
application or by the device profile for a specific CANopen device.

1.2.1.1 Mapping parameters — What is the structure of a PDO?

A PDO consists of adjacent entries in the object dictionary. The so-called mapping
parameters define the connection to these entries. A mapping parameter defines the
source of the data via index, sub-index and number of bits. The destination, i.e. the
placement within a CAN message, is defined by the order of the mapping parameters in
the mapping table as well as the number of bits for each data.

Example:

Index Sub-index | Object Data | Description

0x1A00 |0 4 Number of mapped entries

1 0x20000310 | The entry at index 0x2000, sub-index 3, with a
length of 16 bit, is mapped to bytes 0 and 1 within
the CAN message.

2 0x20000108 | The entry at index 0x2000, sub-index 1, with a
length of 8 bit, is mapped to byte 2 within the
CAN message.

Table 1: Example for mapping parameters for the first TPDO

A CAN message can contains a maximum of 8 data bytes. This means that when using a
PDO, up to 8 object dictionary entries can be transmitted in one PDO.

RPDO
| COB-ID | | object A | object C | object B Index Sub Contents
0x1600 0 3
0x1600 1 0x20000108
»] 0x1600 2 0x20000310
»] 0x1600 3 0x20000208
0x2000 0 3
0x2000 1 object A
0x2000 2 object B
0x2000 3 object C

Figure 3: Mapping of object dictionary entries into a PDO

14 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

Mapping parameters are entries in the object dictionary (RPDOs: index 0x1600 — Ox17FF,
TPDOs: 0x1A00-0x1BFF) and therefore can be read via the CAN bus using service data
object (SDO) and, if permitted (if write access is enabled for this entry), be modified as well.
The PDO mapping can be done statically. In this case mapping parameters cannot be
changed. Depending on the device profile or application specification, it is also possible to
change the PDO mapping of a CANopen device at runtime. This is called dynamic
mapping?.

Note:

Before performing a new mapping the user must ensure that PDO is set invalid (by setting
bit 31 of COB-ID in its communication parameters) and sub-index O of its mapping
parameters contains the value 0. If this is not the case, the SDO abort code 0x06010000
(unsupported object access) is returned upon an attempt to remap.

With the help of a SDO download, the new configuration can be stored in the mapping
table. The new configuration becomes valid after writing the new value to sub-index 0 in
the mapping table, which is unequal to 0.

1.2.1.2 Communication parameter for PDO

The communication parameters define the transmission properties and the COB-IB (CAN
identifier) for transmission of a PDO. Configuration of the communication parameters has
a direct impact on the frequency of PDO transmissions and hence on the CAN bus load.

Index |Sub-index |Object Data Description
1800h |0 Number on entries
1 COB-ID CAN identifier for the PDO
2 Transmission type | transmission type of the PDO
3 Inhibit time minimum inhibit time for a TPDO
4 reserved reserved
5 Event time maximum time between two TPDOs

Table 2: Communication parameter for the first TPDO

PDO communication parameters are entries in the object dictionary (for RPDOs: index
0x1400 — Ox15FF, for TPDOs: index 0x1800-0x19FF) that can be read and, if permitted,
changed via the CAN bus with the help of service data object (SDO).

1. Dynamical mapping requires that the modified mapping parameters are stored on a
non-volatile memory on the target device. If this is not possible (no non-volatile
memory available) the system configurator must restore the mapping upon network
bootup.

© SYS TEC electronic GmbH 2015 L-1020e_14 15

CANopen Software

1.2.1.3 COB-ID (CAN identifier, sub-index 1)

The COB-ID serves for identification and definition of the PDO’s priority upon bus access.
Only one sender (producer) is allowed for each individual CAN message. It is, however,
possible that multiple receivers (consumers) for this message exist.

Bit 31 30 29 |28-11 10-0

11-bit-ID 0/1 0/1 0 000000000000000000 11-bit identifier

29-bit-1D 0/1 0/1 1 29-bit identifier

Table 3: Structure of a COB-ID for PDOs

Bit 30 defines the access rights, bit 30=0 means that a remote transmission request (RTR)
for this PDO is permitted. Setting bit 31 to logical 1 the PDO can be deactivated for further
processing.

Note:

Since CiA 301 V4.02, a new procedure for changing of the mapping and communication
parameters applies.

Before bit 0 to 29 can be changed, a configuration tool needs to set bit 31 of the COB-ID
to 1. By doing this, the PDO becomes disabled and it is allowed to change the parameters.
The same procedure has to be followed for changing the transmission type (sub-index 2).

The CANopen standard defines COB-IDs (default identifier) for the first 4 PDOs depending
on the node number (pre-defined connection set — refer to section 1.8). Communication
between slave nodes is not possible when using these default identifiers. CANopen offers
the possibility to adjust the CAN identifier for a given communication object. For example,
the CAN identifier for a TPDO in a CANopen device can also be assigned to a RPDO in
another CANopen device. With this, it is possible to establish direct communication
between two slave nodes. This assignment of CAN identifiers for PDOs is also called PDO
linking.

16 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.2.1.4 Transmission type (sub-index 2)

The transmission type of a TPDO defines under which circumstances data are collected
(e.g. input values read) and a PDO is transmitted. For RPDOSs, the transmission type
defines how data received in the PDO is put through to the outputs of the device.
Transmission can be initiated event-driven, synchronized or in polling mode.

a) TPDOs

A TPDO can be transmitted cyclic or acyclic. Cyclic transmission takes place after receipt
of a cyclic SYNC messagel. In this case, it is unimportant whether input data has have
changed or not. If the transmission type of a TPDO is set to acyclic, the corresponding
TPDO is sent only after a certain event occurred. Such an event can be the reception of a
SYNC message, a change of the input data, the expiration of an event timer period? or a
remote frame.

b) RPDOs

RPDOs will always be received. However, data contained in the RPDO will only be put
through to the corresponding outputs if certain events occur. Such an event can be the
reception of a SYNC message or a change of the receipt data compared to the previous
RPDO. As an option, the event timer (sub-index 5) can be configured as supervision time
for any transmission type. If a PDO is received outside of the period configured with the
event time, then the application will be informed (see CcmCbError section 2.7.1.8).

1. A SYNC message is a CAN message without data content and is used to synchronize
communication objects of other connected nodes. The SYNC producer is responsible
for cyclic transmission of the SYNC message.

2: An event timer can be used to initiate transmission of a PDO after the event time is
expired even if the data within the PDO have not changed. The event time is
configured with the help of sub-index 5.

© SYS TEC electronic GmbH 2015 L-1020e_14 17

CANopen Software

Transmission

Data requisition Transmit PDO

type
0 Data (input values) are read upon If the PDO data has changed
receipt of a SYNC message. compared to the previous PDO
content then the PDO will be
transmitted.
1-240 Data is collected and updated upon receipt of the n-th number of SYNC
messages and then transmitted on the bus. The transmission type
corresponds to the value of n.

241-251 reserved

252 Data (input values) are read upon The PDO is transmitted upon

receipt of a SYNC message. request via a remote frame.

253 The application continuously collects

and updates the input data.

254 The application defines the event for data requisition and transmission
of a PDO. An event that causes transmission of a PDO can be the
expiration of the event timer. The event timer period is configured with
sub-index 5. Transmission of a PDO (independent from the event and if
the event timer was configured) always starts a new event timer period.

255 The device profile defines the event for data requisition and

transmission of the PDO. An event that causes transmission of a PDO
can be the expiration of the event timer. The event timer period is
configured with sub-index 5. Transmission of a PDO (independent from
the event and if the event timer was configured) always starts a new
event timer period.

Table 4: Transmission type for TPDOs

;I;/rggsmlssmn PDO receipt Data update

0 The PDO will always be receipt. | Data is analyzed upon receipt of a SYNC
Analysis and, if required, message. If the data has changed
update of the data occurs upon | compared to the previous RPDO, then it
receipt of the next valid SYNC | will be updated on the outputs.
message. Transmission of the SYNC message is

acyclic.

1-240 Data is analyzed upon receipt of the n-th
number of SYNC messages. If the data
has changed compared to the previous
RPDO, then they will be updated on the
outputs. The transmission type
corresponds to the value of n.
Transmission of the SYNC message is
cyclic.

241-251 reserved

252 reserved

253

254 The PDO will always be receipt. | The application defines the event for
updating the output data.

255 The PDO will always be receipt. | The device profile defines the event for
updating the output data.

Table 5: Transmission type for RPDOs

18

© SYSTEC

electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.2.1.5 Inhibit time (sub-index 3)

The inhibit time represents the minimum time that must elapse between transmission of
two TPDOs. This enables a reduction of the bus load and an increase in data bandwidth.

The inhibit time is stored as UNSIGNED16 value in steps of 100 ps.
1.2.1.6 Eventtime (sub-index 5)

a) TPDOs

After the event time has expired, a TPDO is sent, even if the data content of the PDO has
not changed compared to the previous transmission. The event timer is restarted after each
transmission. Hereby it is unimportant whether the transmission was caused by the
expiration of the event time or the change of the PDO data. This allows configuration of
periodic PDO transmission. An inhibit time, configured via sub-index 3, will not be
considered.

Resetting the event time to zero (zero is the default value) results in deactivation of the
event timer. Transmission of the PDO is then only possible if the data content changes.
The inhibit time will be considered in this case.

b) RPDO

The event timer (sub-index 5) can be configured as supervision time if the transmission
type 254 or 255 is selected. If no PDO is received within the period configured with the
event time, then the application will be informed. This feature is not implemented in
SYS TEC CANopen stack. However, user can implement it in application level.

1.2.2 Service data object (SDO)

The object dictionary serves as primary data exchange medium between several CANopen
devices. All data entries for a CANopen device can be managed within the object dictionary
(OD). Each OD entry can be addressed using index and sub-index. CANopen defines so-
called service data objects (SDO) that are used to access these entries from another
CANopen device.

CANopen device A (SDO client) CANopen device B (SDO server)
CANopen CANopen SCthNI?pen oD
application stack 0x1000

Data

Request SDO request i 0x1018

CAN bus
Data 0x2000
Confirmation <= SDO confirmation -
0x6000

Figure 4. Data transmission of object data via SDO

The communication model used for this data exchange is based on the client-server model.
A read or write access is always initiated by a client and is served by a server. Each
CANopen device must have an SDO server to access its object dictionary.

© SYS TEC electronic GmbH 2015 L-1020e_14 19

CANopen Software

SDO transmission requires two different COB-IDs (CAN identifier). The first COB-ID is used
to transmit the request from the client to the server. The server sends its response back to
the client using the second COB-ID. Different COB-IDs must be used for each direction in
order to avoid collisions on the CAN bus. The communication profile defines the COB-IDs
that should be used for the default SDO server. Each CANopen device may possess up to

127 SDO servers.

The CANopen standard CiA 301 defines different protocols for transmission of SDOs.

Protocol Data Length

Description

expedited |1 -4 bytes
transfer

Data is already transmitted when initiating the data
transfer. This protocol must be supported by each
CANopen device.

segmented |1 - >64 kByte
transfer

Only the length of the upcoming data package is
transmitted when initiating the data transfer. Data is
transmitted in segments of 7 data bytes and one protocol
byte each. Each segment is confirmed by a response
message.

block 1 - >64 kByte
transfer

Only the length of the upcoming data package is
transmitted when initiating the data transfer. Data is
transmitted in segments of 7 data bytes and one protocol
byte each. Up to 127 segments are transmitted within
one block. Only complete blocks are confirmed by a
response message. Lack of confirmation for each
segment increases the data throughput on the bus
especially when transmitting larger data packages.

Table 6: SDO transfer types

Reading of OD entries is called ‘upload’, writing of entries is called ‘download’. An ongoing
transmission can be terminated by a server or a client with the help of the abort transfer

service.

20

© SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.2.1 Synchronization object (SYNC)

The synchronization mechanism used in CANopen is based on the producer-consumer
scheme. One producer exists in the network that cyclically transmits the SYNC message.
The SYNC message contains no data.

The identifier for this SYNC message is specified in object dictionary entry 0x1005. This
entry furthermore configures whether the device is SYNC producer or SYNC consumer.

Two other object dictionary entries specify the timing properties during transmission. The
time interval between two subsequent SYNC messages is defined in entry Communication
Cycle Time (0x1006). The time interval in which the TPDOs must be transmitted at the
latest after receiving a SYNC message is configured with the Sync Window (0x1007) entry.

For each device supporting synchronous PDOs the SYNC message has the following

meaning:

TPDOs: update the data to be sent and subsequent transmission of the PDO within the
synchronization window

RPDOs: output the data received in the previous PDO during the most recent
synchronization interval to the corresponding outputs

1.2.2 Time stamp object (TIME)

CANopen provides a mechanism that allows for synchronization of all network nodes. This
service is based on the producer-consumer model. One TIME producer exists in the
network that provides the common reference time for all nodes (consumers).

The identifier for the TIME message is defined with object dictionary entry Time Stamp
Object (0x1012).

1.2.3 Emergency object (EMCY)

CANopen supports the application to indicate error states over the CAN bus. Two error
categories can be distinguished:

Communication Error
The network layer can recognize and report the following errors:

- frequent occurrence of errors while transmitting messages
- bus-off state of the CAN controllers?

- Transmit buffer overflow

- Receive buffer overflow

- Loss of heartbeat or life guarding

- CRC error in SDO block transfer

Application Error

Application errors are errors such as short circuit, under-voltage, exceeding temperature
thresholds, code or RAM errors as well as conditions not permitted such as alarms and
disturbances.

1. Each CAN controller has an internal error counter. This error counter is decremented
after successful communication. If the error counter exceeds certain error limits it
causes the CAN controller to shut off. It then will no longer participate on further
communication unless the application resets the CAN controller or its error counter.

© SYS TEC electronic GmbH 2015 L-1020e_14 21

CANopen Software

The Application and network layer signalize such errors. However, it is the application’s
task to analyze, process and signalize these errors. CANopen provides the communication
object ‘Emergency’ to report such errors over the CAN bus.

Identifier | Data

0 1 2 3 4 |5 6 7
0x080+ Emergency Error
Node Error Code Register | manufacturer-specific information
Number Index 0x1003 0x1001

Figure 5. Structure of an emergency message

The CiA-301 standard as well as the applicable device profiles for CANopen define specific
error codes for transmission of error states. The emergency message can also contain
manufacturer-specific data that further describes the error. The transmitted error code
indicates the error that occurred. The error register assigns certain categories to groups of
errors and indicates if errors still exist within the corresponding category. If the error
disappears, the CANopen device will transmit a message with the error code reset (high
portion equals zero). At the same time, the data content of the error register that is also
transmitted in this message indicates if other errors still exist.

Errors, that are caused by improper access to object dictionary entries or interrupted
transmission of SDO services, will be reported by an ‘abort SDO transfer service’ message
in CANopen.

1.2.4 Layer setting service (LSS)

In the CiA 305 standard CANopen defines layer setting services (LSS) to allow
configuration of base parameters (baud rate, node number) for devices that do not provide
any means of external mechanical configuration (e.g. via DIP or HEX switches). The LSS
master can change the baud rate and node number of a CANopen LSS slave over the CAN
bus with the help of layer setting services (LSS). First the LSS master renders all LSS
slaves into configuration mode. Then the LSS master transmits the new baud rate using
the ‘Configure bit timing’ service. The LSS slave now responds with a CAN message that
indicates whether this new baud rate is supported by the LSS slave or not. If the LSS slave
accepts the new baud rate the LSS master sends the ‘Activate bit timing’ service to the LSS
slave. This informs the LSS slave to activate the new baud rate after a time called
‘switch_delay’. After successful completion of this cycle the LSS master renders the LSS
slave back into operational mode.

The LSS service can also be used to change the node address of an LSS slave. For this,
the LSS master renders all LSS slaves into configuration mode again. Then the LSS master
transmits the new node address. The LSS slave now responds with a CAN message that
indicates whether this new node number is within the supported range of node numbers for
this node. Upon switching the LSS slave back into operational mode, a software reset is
released. This causes the LSS slave to configure its communication objects based on the
new node number (refer to section 1.8).

22 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

Identifier DLC Data

0 1 2 3 4 Js5 |6 |7

OX7E5 8 0x04 |mod reserved

Figure 6: “switch mode global” service

mod: new LSS mode
0 = switch to operational mode
1 = switch to configuration mode
Identifier DLC Data
0 1 2 3 |4 |5 |6 |7
0x7E5 8 0x13 |tab ind reserved

Figure 7. “Configure bit timing” service

tab: indicates the baud rate table to be used

0 = baud rate table as defined according to CiA 305

1..127 = reserved

128 ...255 = can be defined by the user

ind: index within the baud rate table in which the new baud rate for the CANopen

device is stored

Identifier DLC Data
0 1 2 3 [4 |5 B |7
Ox7E4 8 Ox11 |err spec |reserved

Figure 8: “Response to Configure bit timing” service

err: error code

0 = operation completed successfully
1 = baud rate not supported

2..254 = reserved

255 = special error code in spec

spec: manufacturer-specific error code (only if err = 255)

Identifier DLC Data
0 1 [2 3 [4 |5 |6 |7
O0x7E5 8 0x15 |delay reserved

Figure 9: “Activate bit timing” service

delay: relative time until activating new baud rate [in ms]

Identifier DLC Data
0 1 2 |3 |4 |5 |6 |7
OX7E5 8 0x11 |nid reserved

Figure 10: “Configure Node ID” service

nid: new node address for the LSS slave (values permitted: 1 to 127)

© SYS TEC electronic GmbH 2015 L-1020e_14 23

CANopen Software

Identifier DLC Data
0 1 2 3 [4 |5 |6 [7
OxX7E4 8 0x13 |err spec |reserved

Figure 11: Response to “Configure Node ID” service

err: error code
0 operation completed successfully

1 = node address invalid (only values 1 to 127 are permitted)
2..254 = reserved
255 = special error code in spec

spec: manufacturer-specific error code (only if err = 255)

Table Index Baud Rate SYSTEC Definition in [edrv.h]
0 1000 kBit/sec kBdilMbaud

1 800 kBit/sec kBdi800kBaud

2 500 kBit/sec kBdi500kBaud

3 250 kBit/sec kBdi250kBaud

4 125 kBit/sec kbdi125kBaud

5 100 kBit/sec kBdi100kBaud

6 50 kBit/sec kBdi50kBaud

7 20 kBit/sec kBdi20kBaud

8 10 kBit/sec kBdi10kBaud

Table 7: Baud rate table according to CiA 305

Note:

The clock speed for various CAN controllers might be different depending on the hardware
that is used. Thus any baud rates cannot be selected via LSS service.

The CiA 305 standard also describes further LSS services. Description of these services is
not provided in this manual. Please refer to applicable documentation provided by the CiA
User’s group.

24 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.3 Network Management (NMT)

Several other network services for supervision of networked nodes are provided in
CANopen besides the services for configuration and data exchange. NMT (network
management) services require one CANopen device in the network that assumes the tasks
of an NMT master. Such tasks include initialization of NMT slave, distribution of identifiers,
node supervision and network booting among others.

1.3.1.1 NMT state machine

CANopen defines a state machine that controls the functionality of a device. Transition
between the individual states is initiated by internal events or NMT master services. These
device states can be connected to application processes.

power on

Initialiiaticm/ <

(11) 12) (10)

/

Pre-Operational

(6

 C

Figure 12: NMT state machine for CANopen devices

Stopped

In Initialisation state, the CANopen data structures of a node are initialized by the
application. The CiA 301 standard defines various mandatory OD entries for this task as
well as specific communication objects required for that. In the minimum device
configuration, the identifier for these communication objects must correspond to the so-
called pre-defined connection set (refer to section 1.8). The device profiles define further
settings for the applicable device class. The pre-defined settings of the identifiers for
emergency messages, PDOs and SDOs are calculated based on the node address (Node
ID), which can be in the range from 1 to 127, added to a base identifier that determines the
function of the individual object.

After Initialization is completed the node automatically switches into Pre-operational (12)
state. The NMT master will be informed about this state change with the BOOTUP message
sent by the corresponding node. In this state it is not possible to communicate with the
node using PDOs. However, the node can be configured over the CAN bus using SDOs in
Pre-operational state. NMT services and life guarding are also available in this state.

The application as well as the available resources of the CANopen device determine the
amount of configuration via SDO over the CAN bus. For example, if the CANopen device
does not provide a non-volatile memory to store mapping and communication parameters
for PDOs and these parameters differ from the default values, then these parameters must
be transmitted to the node over the network after initialization is completed.

After the configuration of these parameters by the application or the NMT master is
completed, the NMT service start remote node (6) can be used to render the node from
Pre-operational state into Operational state. This state change also causes the initial
transmission of all TPDOs independently of whether an event for it is present. Each
subsequent transmission of PDOs then always takes place as a function of an event.

© SYS TEC electronic GmbH 2015 L-1020e_14 25

CANopen Software

All CANopen devices also support the stop remote node (7), enter pre-operational (8), reset
node (10), and reset communication (11) services. reset node is used to reset the
application-specific data and the communication parameter of the node.

The power on values or values stored in non-volatile memory (if previously stored) are used
for reset values. The CANopen data structures are loaded with their initial values.

If the NMT service reset communication is used to change the state of a node, then
communication parameters in the CANopen stack are reset exclusively.

No communication via PDO and SDO is possible if the device is in Stopped state. Only
NMT services, node guarding, life guarding as well as heartbeat are possible in this state.

1.3.1.2 Node guarding

Node guarding represents a means of node supervision that is initiated by the NMT master.
This service is used to request the node’s operational state and to determine whether the
node is functioning correctly. The NMT master transmits a single Node Guard message to
the slave in the form of a remote frame with the CAN identifier 0x700 plus the node address
of the NMT slave. As a response to this remote frame, the NMT slave sends a CAN
message back containing its current NMT state and a one bit that toggles between two
subsequent messages.

Identifier DLC Data
0
0x700 + Node Address 1 Status Byte

Figure 13: Response of the NMT slave to a node guarding remote frame

Status Byte Node State
0x00 (BOOTUP)
0x04 Stopped

0x05 Operational
Ox7F Pre-operational

Table 8: Node state of a CANopen device

Bit 7 of the status byte always starts with a 0 and changes its value after each transmission.
The application is responsible for actively toggling this bit. This ensures that the Node
Guard response message from a slave is not just stored in one of the Full-CAN channels.
Thus the NMT master will get the confirmation from the NMT slave node that the application
is still running.

1.3.1.3 Life guarding

As an alternative to node guarding node supervision can also be performed by life guarding
services. In contrast to the node guarding the NMT master cyclically sends a Life Guard
message to the slave in the form of a remote frame with the CAN identifier 0x700 plus the
node address of the NMT slave. As a response to this remote frame, the NMT slave sends
a CAN message back containing its current NMT state and a one bit that toggles between
two subsequent messages. The NMT masters application is informed if an answer is
missing or in the event of an unexpected status. Furthermore, the slave can detect the loss
of the masters. The life guarding is started with the transmission of the first Life Guard
message of the masters.

26 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

Identifier DLC Data
0
0x700 + Node Address 1 Status Byte

Figure 14: Response from the NMT slave to a life guarding remote frame

Meaning of the status byte corresponds to that of the node guarding message (refer to
Table 8).

The life guarding supervision on the NMT slave node is deactivated, if the Life Guard time
(object entry 0x100C in the object dictionary) or the Life time factor (object entry 0x100D in
the object dictionary) is equal to zero.

1.3.1.4 Heartbeat

Heartbeat is a supervisory service for which no NMT master is necessary. Heartbeat is not
based on remote frames, but does work according to the Producer-Consumer model.

1.3.1.5 Heartbeat producer

The heartbeat producer cyclically sends a heartbeat message. The producer heartbeat time
(16-bit — value in ms), configured at object dictionary index 0x1017, will be used as cycle
time between two subsequent heartbeat messages. As COB-ID 0x700 plus node address
is used. The first byte of the heartbeat message contains the node status of the heartbeat
producer.

Identifier DLC Data
0
0x700 + Node Address 1 Status Byte

Figure 15: Heartbeat message

Meaning of the status byte corresponds to that of the node guarding message (refer to
Figure 13).

In contrast to the Node and/or life guarding, bit 7 of the status byte does not change after
each transmission. It always contains the value 0. This is also not necessary here, because
a Full CAN controller cannot send this message automatically, since this protocol is not
based on remote frames. It is the application’s task to initiate the transmission of the
heartbeat message.

Setting the producer heartbeat time (entry 0x1017 in the object dictionary) to zero disables
the heartbeat producer.

© SYS TEC electronic GmbH 2015 L-1020e_14 27

CANopen Software

1.3.1.6 Heartbeat consumer

The heartbeat consumer analyzes heartbeat messages sent from the producer. In order to
monitor the producer, the consumer requires every producer’s node number, as well as the
consumer heartbeat time.

The information is stored in the object dictionary at entry 0x1016. For every monitored
producer, there is a corresponding sub-entry that contains the node number of the producer
and the consumer heartbeat time.

Bit 31...24 23...16 15...0

Value 0x00 Node number Consumer heartbeat time

Table 9: Heartbeat consumer configuration

The consumer is activated when a heartbeat message has been received and a
corresponding entry is configured in the OD (value different from 0). If the Heartbeat time
configured for a producer expires without receipt of a corresponding heartbeat message,
then the consumer reports an event to the application.

The heartbeat consumer is completely deactivated when the consumer heartbeat time is
given a value of 0.

28 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.4 CANopen communication profile

The CiA 301 [4] CANopen communication profile defines the communication parameter for
communication objects that must be supported by each CANopen device for this class.
Beyond the communication profile supplemental device-specific CANopen frameworks and
device profiles are available.

The following CANopen frameworks have been released by the CiA (selection):
- Framework for programmable CANopen devices (CiA 302)
- Framework for safety-relevant data transmission (CiA 304)
The following CANopen device profiles are available:
- Device profile for input/output modules (CiA 401) [7]
- Device profile for drive controls (CiA 402)
- Device profile for display and terminal devices (CiA 403)
- Device profile for sensors and data acquisition modules (CiA 404)
- Device profile for SPS according to IEC 61131-2 (CiA 405)
- Device profile for encoder (CiA 406)
- Device profile for proportional valves (CiA 408)

CAN identifier of a COB, inhibit times and transmission type of a PDO, amongst others, are
considered communication parameters. The communication parameters are part of the
object dictionary and they can be read from and, if the applicable access rights are granted,
be written to by the user application. Some parameters are explained in section 1.2, while
information on other parameters can be found in the previously discussed CANopen
frameworks and device profiles.

© SYS TEC electronic GmbH 2015 L-1020e_14 29

CANopen Software

1.5 Transmission protocols

Transmission of communication objects is defined by transmission protocols. These
protocols are also described in the CiA 301 CANopen communication profile and are not a
topic of this manual.

It should be noted, however, that the range of the realizable protocols could be limited. This
saves resources for code and data. Section 2.11 describes how this resource reduction
can be achieved.

1.6 Object dictionary (OD)

The object dictionary (OD) is the connecting element between the application and
communication on the CAN bus, enabling data exchange from the application over the CAN
network. CANopen defines services and communication objects for accessing the object
dictionary. Each entry is addressed via index and sub-index. The properties of an OD entry
are defined by a type (UINT8, UIN16, REAL32, visible string, and attributes (read-only,
write-only, const, read-write, mappable).

The maximum number of OD index entries is 65,536, between 0 and 255 sub-index entries
are possible for each (main) index. Index entries are pre-defined by the applicable
communication profile or device profile, respectively. Type and attributes for available sub-
index entries within a main index may vary.

Index Sub-index |Type Attribute
0x2000 0 UINT8 const
1 UINT32 read-write
2
3

Table 10: Structure of an object dictionary entry

Default values can be assigned to individual entries. The value of an entry can be changed
with the help of SDO communication if the attribute assigned to the entry allows such
access (read-write and write-only; not possible for read-only and const). The value can also
be changed by the application itself it the attributes for the entry are read-write, write-only
and read-only (not possible for const).

The OD is further divided in sections. The section with index 0x1000 — Ox1FFF is used for
definition of parameters for the communication objects and the storage of common
information, such as manufacturer name, device type, serial number etc. Entries from index
0x2000 to Ox5FFF are reserved for storing manufacturer-specific values. Device-specific
entries, as defined by the device profile or frameworks, follow at index 0x6000 and higher.

CiA 301 defines several mandatory entries that each CANopen device must always
possess. These entries are marked as mandatory. These mandatory entries are
supplemented by entries defined in the corresponding device profile.

The creation of an object dictionary is the subject of an additional manual (L-number L-
1024) provided by SYS TEC. Creation of an object dictionary from an EDS (electronic data

sheet) is supported by the OD-Builder! (refer to manual L-1022).

1. OD-Builder is a product developed by SYS TEC electronic GmbH.

30 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen Fundamentals

1.7 Error handling and reporting

Various mechanisms are provided in CANopen to report error events:

e Emergency object: This is a high-priority, 8-byte message that contains the error
information. Refer to section 1.2.3 for detailed description.

e Error register: This is a 1-byte object dictionary entry at index 0x1001. This entry is
provided to report the presence of an error and its type.

e Pre-defined error field: This is an error list, which is stored in the object dictionary at
index 0x1003. This list contains the emergency error code as well as device-specific
information. The structure of this list shows the most recent error at sub-index 1.

© SYS TEC electronic GmbH 2015 L-1020e_14 31

CANopen Software

1.8 Telegram table (pre-defined connection set)

CANopen defines default COB-IDs (CAN identifier) for simple network configuration with
one master node and up to 127 slave nodes. These default COB-IDs depend on the service
and the node number of the corresponding slave device. A function code has been defined
for each service. The resulting COB-ID is based on the function code and the node

numberl.
COB Identifier (CAN Identifier)
10 9 8 7 6 5 4 2 1 0
Function Code Node Number
Object El:)r(]j(;tlon mﬁfneber COB-ID object dictionary Index
Broadcast messages
NMT 0000, - 0 -
SYNC 0001p - 0x80 0x1005, 0x1006, 0x1007
TIME 0010p - 0x100 0x1012, 0x1013
STAMP
Point-to-point messages
Emergency |0001p 1-127 0x81-OxFF 0x1014, 0x1015
TPDO1 0011 1-127 0x181-0Ox1FF 0x1800
RPDO1 0100p 1-127 0x201-0x27F 0x1400
TPDO2 0101, 1-127 0x281-0x2FF 0x1801
RPDO2 0110y 1-127 0x301-0x37F 0x1401
TPDO3 0111p 1-127 0x381-0x3FF 0x1802
RPDO3 1000p 1-127 0x401-0x47F 0x1402
TPDO4 1001y 1-127 0x481-0x4FF 0x1803
RPDO4 1010p 1-127 0x501-0x57F 0x1403
SDO (tx) 1011, 1-127 0x581-0x5FF 0x1200
SDO (rx) 1100p 1-127 0x601-0x67F 0x1200
NMT Error |1110p 1-127 0x701-0Ox77F 0x1016, 0x1017

Control

Table 11: pre-defined master/slave connection set [1]

1 The node number can be assigned locally or with the help of LSS services over the CAN

bus.

32

© SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

2 CANopen User Layer

The following section describes the data structures and API functions of the
SYS TEC electronic GmbH specific implementation of the CANopen standard CiA 301.
Support for additional CANopen standards is also implemented or prepared. In addition
hardware and compiler specific characteristics are taken into consideration as well. The
API offers interfaces that can be used for expansion of device specific properties. The
experience of SYS TEC engineers in integrating or porting the CANopen stack in various
customer applications has contributed to an expansion of the standard as well. Therefore
any deviations from the CANopen standard are especially identified as such. Design,
creation and configuration of an object dictionary is described in a separate manual (refer
to L-1024).

2.1 Software structure

Before the individual API functions can be explained, a description of the software structure
and the file structure is necessary. This provides a foundation for finding your way in later
implementation. As a rule, the CANopen stack has a divided structure for application
specific and hardware specific modules.

The CANopen stack is divided up into individual modules. With the definition of modules,
the CANopen stack's parameters (function parameters, data parameters) were structured
S0 as to be scalable. A portion of the modules are to be considered as core modules and
are a mandatory component in the CANopen stack. Other modules are not required for
setting tasks. This refers mostly to CANopen functions, which according to the CANopen
standard can be implemented optionally or as an alternative to other functions.

In order to leave out individual modules without complications, there can be no lateral
function call to another module within the modularized software layer, rather only to
modules positioned above or below (as a callback function) 17.

The application specific layer "CANopen controlling module" (CCM) controls the interaction
of the individual modules. The CCM layer is not absolutely necessary for implementation
in the application. However it provides a convenient interface for use of multiple CANopen
instances and encapsulates sequential function calls of multiple APl functions (i.e.
initialization, definition of PDOSs) in functions.

The hardware specific layer encapsulates the special properties of a CAN controller or
microcontroller. Porting to new hardware is simplified thereby and can be reduced to an
exchange of the transceiver for the CAN controller and the microcontroller specific
initialization.

17: with this it is possible to not include certain modules or services when creating a
CANopen application without getting error messages from the linker about
unreferenced functions.

© SYS TEC electronic GmbH 2015 L-1020e_14 33

CANopen Software

application
application
CCM Main CCM DfPdo CCM Obj CCM Xxx
Instance table |Instance tablei CCM layer
PDO SDOS SDOC LSS NMTS /NMTM HBP HBC
NMT
CANopen stack
layer
OBD
CcoB
CDRV CAN driver
layer

Figure 16: Software structure overview

All software layers are instanceable. This means that multiple CAN networks can be
managed within one CANopen device. Combining the several CAN networks has to be
done within the application.

2.1.1 CANopen stack

The CANopen stack is portable; this means it is implemented independent from any
hardware or application specific environment.

Following table lists all available modules of the SYS TEC CANopen stack, which
implements the individual services. All these modules are combined in CCM layer. To add
a CANopen service into an own CANopen application user has to add the according
module to its project and to set the according bit in constant
CCM_MODULE_INTEGRATION of file COPCFG.H.

34 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

Module

Description

COB

The COB layer provides services for transmission of communication
objects and therefore serves as a base layer that is required in any of the
configuration variants.

OBD

The OBD module provides the global data structure for all CANopen
instances. All data structures, that are configurable by the user, are
created in this module. This includes the object dictionary as well as tables
for managing PDOs and SDO server and clients.

NMT

This module creates the NMT state machine and calls the callback
function for the NMT state change in the CCM module.

NMTS

This module provides services for node guarding, life guarding and Boot-
up as NMT slave. It is not possible to use both NMTS and NMTM at the
same time within one CANopen instance.

NMTM

This module provides services for node guarding, life guarding and Boot-
up as NMT master. It is not possible to use both NMTM and NMTS at the
same time within one CANopen instance.

HBP

This module provides services for a heartbeat producer. It is possible to
have a heartbeat producer and a consumer both existing at the same time
in one CANopen instance. It is not possible to activate both heartbeat and
life guarding at the same time for the given node.

HBC

This module provides services for a heartbeat consumer. It is possible to
have a heartbeat producer and a consumer both existing at the same time
in one CANopen instance. It is not possible to activate both heartbeat and
life guarding at the same time for the given node.

PDO

This module provides services to define and transmit PDOs. In addition,
services for Sync Producer and Consumer are generated here as well.

PDOSTC

This module provides the same services as the PDO module but
implements a static PDO mapping.

SDOSCOMM

This module provides services to manage SDO servers and service data
object (SDO) as well as the protocols for transmission of service data object
as server. The supported protocols (expedited, segmented, block) are
configurable.

SDOC

This module provides services to manage SDO clients and service data
object (SDO) as well as the protocols for transmission of service data
object as clients. The supported protocols (expedited, segmented, block)
are configurable.

LSSSLV

This module provides services for configuration of bit timing and module
ID for a LSS slave.

LSSMST

This module provides services for configuration of bit timing and module
ID for a LSS master.

EMCC

This module provides services for an emergency consumer. It is possible
to have an emergency producer and consumer both existing at the same
time in one CANopen instance.

EMCP

This module provides services for an emergency producer. It is possible to
have an emergency producer and consumer both existing at the same
time in one CANopen instance.

HPT

This module provides services for a High Presition Time Stamp producer
and/or consumer.

TSO

This module provides services for a Time Stamp Object producer and/or
consumer.

Table 12: CANopen stack modules

© SYS TEC electronic GmbH 2015 L-1020e_14 35

CANopen Software

2.1.2 Hardware-specific layer

The CDRV modules make a single interface available to the CANopen stack for various
CAN controllers. The special properties and "peculiarities" of the CAN controllers are thus
taken into account in the CDRV driver. Porting to a new hardware platform is enabled by
creating or adapting the CDRV driver.

The CDRYV drivers are instanceable. This solution becomes interesting for targets with
multiple CAN controllers. There multiple CANopen interfaces can be created in order to
serve multiple CANopen networks from a single application. The implementation of multi-
channel CAN cards on the PC (such as pcNetCAN, PCI-CAN or USB-CANmodul) is then
possible.

When creating/configuring the CANopen stack, the following cases should be taken into
consideration:

e The target supports various CAN controllers (e.g. microcontroller C167CR with
integrated CAN controller and an external CAN controller SJA1000). A hardware driver
is required for each CAN controller. One instance exists for each hardware driver.

e The target supports more than one CAN controller (e.g. C167CS with two integrated
CAN controllers). However, a hardware driver with N instances is required for the CAN
controller.

Section 2.11 describes the settings for the selection and configuration of the hardware
drivers. For additional information on the CDRV module refer to L-1023 "CAN Driver
Software Manual".

2.1.3 Application-specific layer

The application specific layer "CANopen Controlling Module" (CCM module) controls the
interaction of the individual modules. The CCM layer is not absolutely necessary for
implementation in the application. However, it provides a convenient interface for use of
multiple CANopen instances and encapsulates sequential function calls of multiple API
functions (i.e. initialization, definition of PDOSs) in functions.

The CCM layer contains a series of small function modules. When the application is
created, the user can attach suitable modules or use them as models for their own
expansions to the CCM layer. These expansions may affect the reaction to certain events,
which could occur during a CANopen process. In any case, it is not necessary that the
entire set of modules be attached to an application. 18

Module Description Functions

CcmMain.c, This modules contains the global |- CcmInitCANopen()
CcmWin.c, initializing and process functions for | - CcmShutDownCANopen()
CcmPxRos.c, | CANopen as well as the response to | - CcmDefineVarTab()
CcmLinux.c, important events (state change of the | - CcmConnectToNet()

CcmWinCe.c |NMT state machine, transmission |- CcmProcess()
errors, state). When using an operating | - CcmCbNmtEvent()
system the according file has to be |- CcmCbError()
used instead of CcmMain.c.

CcmObij.c This module contains functions for |- CcmWriteObject()
accessing the own object dictionary. - CcmReadObject()

18: The way of not using software modules that are not required for a specific applications
is partially supported by the linkers. This means that a module can be included within
an IDE project but will not be included in the linking process when no function call to
this module is performed.

36 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

Module Description Functions

CcmbDfPdo.c This module contains a function for |- CcmDefinePdoTab()
configuring the PDOs via a predefined
table in application when using
dynamic PDO mapping.

CcmSnPdo.c | This module contains helper functions | - CcmSignalCheckVar()
for signalling to send a TPDO when |- CcmSignalVar()
using dynamic PDO mapping. - CcmSendPdo()

CcmStPdo.c This module contains helper function | - CcmDefineStaticPdoTab()
for configuring/signalling the PDOs via | - CcmSignalStaticPdo()
a predefined table in application when | - CcmSendPdo()
using static PDO mapping.

CcmStore.c, This module defines functions for |- CcminitStore()

CcmsStore2.c

storing object data from the object
dictionary in the non-volatile memory.
CcmStore2.c has to be used instead of
CcmStore.c for using POSIX functions
to store the OD data into files.

- CcmStoreCheckArchivState()
- CcmCbStore()

- CcmCbRestore()

- CcmCbStoreLoadObject()

CcmSync.c This module defines functions for the | - CcminitSyncConsumer()
SYNC consumer. It supports the |- CcmConfigSyncConsumer()
SYNC configuration. - CcmConfigSyncProducer()
- CcmCbSyncReceived()
CcmEmcc.c This module defines functions for the | - CcminitEmcc()
emergency consumer. It supports the | - CcmEmccDefineProducerTab()
creation of a list containing CANopen | - CcmCbEmccEvent()
devices to be monitored.
CcmEmcp.c This module supports configuration of | - CcmConfigEmcp()
the emergency producer. It provides a | - CcmSendEmergency()
function to erase the pre-defined error | - CcmClearPreDefinedErrorField()
field. - CcmCbEmcpEvent()
CcmNmtm.c This module contains functions for |- CcmInitNmtm()
NMT master services. It also includes | - CcmDefineSlaveTab()
a default callback functions for|- CcmSendNmtCommand()
handling NMT master events. - CcmTriggerNodeGuard()
- CcmConfigbgm()
- CcmCbNmtmEvent()
CcmBoot.c This module contains a function to |- CcmBootNetwork()
send NMT Start Remote Node service
using a NMT slave. This is needful
when no NMT master is available on
CANopen network.
CcmHbc.c This module defines functions for the | - CcminitHbc()
heartbeat consumer. It supports the | - CcmHbcDefineProducerTab()
creation of a list containing CANopen | - CcmChbHbcEvent()
devices to be monitored.
CcmHbp.c This module supports configuration of | - CecmConfigHbp()
the heartbeat producer.
Ccm303.c This module defines functions needed | - Ccm303Initindicators()

for indicating the internal states of the
CANopen device. Two LEDs display
the state information according to the
CiA-303.3 standard.

- Ccm303Processindicators()
- Ccm303SetRunState()
- Ccm303SetErrorState()

© SYS TEC electronic GmbH 2015

L-1020e_14

37

CANopen Software

Module Description Functions
CcmLss.c This module provides functions for - CcmLssmSwitchMode()
implementing the LSS master service. | - CcmLssmConfigureSlave()
The module also contains a default - CcmLssminquireldentity()
callback function of the LSS slave - CcmLssmldentifySlave()
service. - CcmCbLssmEvent()
- CcmCbLsssEvent()
CcmLgs.c This module provides functions for life | - CeminitLgs()
guarding service. The module also - CcmConfigLgs()
contains a default callback function for | - CcmCbLgsEvent()
handling life guarding events.
CcmTso.c This module contains helper functions | - CcmTsoConfigConsumer()
for implementing the Time Stamp - CcmTsoConfigProducer()
Object service as producer or - CcmTsoSend()
consumer. The application has to
control to send the Time Stamp
Object as producer.
CcmsSdoc.c This module contains helper functions | - CcmSdocDefineClientTab()
for implementing SDO client services. |- CcmSdocStartTransfer()
- CcmSdocAbort()
- CcmSdocGetState()

Table 13: CCM layer files

This list gives the names of a few important files in the CCM layer. The CCM layer contents
is expanded constantly and can therefore not be considered to be complete. The
description of functions, parameters and implementation can be found in the applicable
CCM module.

38 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

2.2 Directory structure

Where to find which files?

Folder

Contents

\ccm

Files of the CCM layer.

\copstack

Files of the CANopen stack.

\cdrv

Files of the CAN driver layer.

\examples

Files with sample applications for microcontroller projects
and products with operation systems. Here, the C-files are
stored together with the main-function. There are
additional Header files, i.e. definitions for an easier
handling of the CANopen stack (e.g. bditabdf.h and
appmco.h).

\include

This folder contains all interface files for CANopen. The
files global.h, cop.h must be included in the application.

\objdicts

This folder contains predefined object dictionaries for
different device profiles. Each object dictionary consist of
3 files that belong together; objdict.c, objdict.h and
obdcfg.h. These files can be automatically created with
the help of the ODBuilder tool'°. The selection of the
object dictionary occurs by defining the applicable include
path within the project settings. In addition the following
subfolders contain the corresponding EDS file and the
project file for the ODBuilder.

\domain string

Object dictionary with domain- and string-objects in the
manufacturer-specific area

\ds401 3p

Obiject dictionary for CiA 401 with 3 RPDOs and 3
TPDOs, NMT slave

\ds401 4pstc

Object dictionary for CiA 401 static PDO mapping, NMT
slave

\ds401 7p

Object dictionary for CiA 401 with 7 RPDOs and 7
TPDOs, NMT slave

\0401p3m

Object dictionary for CiA 401 with 3 RPDOs and 3
TPDOs, NMT master

\0o401p7m

Obiject dictionary for CiA 401 with 7 RPDOs and 7
TPDOs

\ds401 4pstc

Object dictionary for CiA 401 static PDO mapping, NMT
slave

\0401p3s_hpt

Object dictionary for DSP-401 with 3 RPDOs and 3
TPDOs, NMT-Slave und High Precision Time Stamp

\target

This folder contains the project folders for various example
applications. One configuration file (copcfg.h) is provided
for each project. This file defines the supported hardware,
the supported properties and protocols.

\easykit-xcl64dcm

Demo projects for Infineon Easy Kit XC164CM.

\fujitsu dev-kitlé6

Demo projects for Fujitsu Development Kit 16.

\phycore-1pc2294

Demo projects for Phytec phyCORE LPC2294.

\x86

Demo projects for PC e.g. using Windows OS.

\projects

This folder is obsolete but still exists for compatibility
reason.

The included files have been linked to the C files without any path indication. In order to
guarantee an error free compilation, the path must be defined to point to the include folder
and the object dictionary for the compiler or for the IDE project.

19: The ODBuilder tool supports the generation of an object dictionary based on an EDS
file. The user can also define entries in the OD. The ODBuilder creates a new EDS
file as well as the C and header files necessary to create the CANopen data structures.

© SYS TEC electronic GmbH 2015

L-1020e_14 39

CANopen Software

2.3 Data structures

In the following section there are explanations for the data structures. There are data
structures that are used for data exchange between the application and CANopen. Other
data structures are used for management and control of processing cycles, functions or
protocols within a module, and are only mentioned to provide a complete listing.

The following data structures are used as application interfaces:

Each CANopen instance?0 has its own object dictionary (OD). The object dictionary
is the coupling element between the application and the communication layer and
contains all CANopen device data. Entries in the object dictionary are addressed over
index and sub-index. Entries can be read or written over the CAN bus with the help of
service data object (SDO, refer to section 1.2.2) or through the application with the help
of API functions (refer to sections 2.7.4 and 2.8.5). With the help of the OBD module's
API functions, the address and size of an entry can be determined, whereby access to
the object entry data is possible via pointers (refer to section 2.8.5). OD entries can
also be linked with application fields or variables. This is advantageous in that access
to data is possible without using one of the CANopen stacks or a pointer's API
functions. Transmission per SDO or access with the help of API functions is not limited
thereby. Due to versatility in application and the alterability of these entries they are
defined as Var entry (variable object entry).

As mentioned above, these Var entries can be embedded in PDOs; under the condition
that mapping of the entries with the attribute kObdAccPdo is allowed.

In order to register a fast and simple modification of a variable with the application, a
variable callback function that includes an argument pointer can be provided when
defining Var-Entries. Modifying an entry about the CAN bus via a PDO results in the
call of the respective PDO callback function, whereby the argument pointer is given as
the parameter.

The object dictionary is organized as a table. Each table entry corresponds to an index.
This index table is located in the ROM. Within an index there are additional tables with
an entry for each sub-index. The sub-index table can be stored in either the ROM or
the RAM. The design of the table has been optimized for access speed and memory
space requirements. Creation of an object dictionary is supported with the help of
macros. It can be created manually or by help of the ODBuilder tool.

An entry for a sub-index contains the type of the object dictionary, right of access, start
value, range values and the data pointer. In the case of a static object dictionary, the
management structure for the object dictionary is created during compilation.

Modification of the table during runtime is not possible. Therefore any later use of an
entry must be known about ahead of time. In the case of a dynamic OD, the
management structures of the object dictionary are created during runtime.

20.

The CANopen stack and the hardware drivers are instanceable. This means that the
functional contents of CANopen can be utilized in several data instances. This makes
it possible to use various independent CANopen interfaces on the same target (e.g.
device with more than one CAN controller).

40

© SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

The application's variables and fields, which are to be transmitted with the help of PDOs
or which were declared as DOMAIN or strings, have to be registered in the object
dictionary Var entries?l. The CCM layer makes the function CcmDefineVarTab
available for this purpose, which automates this procedure with the help of tables.

e Structures are used for transferring complex parameters to functions. The structures
are explained as function parameters. Prior to a function call, a structure of this kind
must be initialized.

Structures and tables for the management of internal cycles and settings:

- For the management of PDOs, SDO server, SDO client, ..., internal tables are
used. The size of the tables (i.e. number of entries) is based on the defined number
of PDOs, SDO servers etc. (refer to section 2.11). The tables are created with the
compiler when compiling the object dictionary. In order to conserve memory
resources and processing time, individual entries from the tables are connect
directly with the entries of the object dictionary. The tables are initialized with the
initialization function of the relevant module.

- Each module contains a global instance table. The instance table contains all of
the variables for module. The variables are used to store processing states and
parameters within a module. Except for in the case of the CCM module, an instance
table is only valid within a module and is therefore declared to be "static". Creation
and modification of entries for a table is supported by macros (refer to section 2.5).

21: When creating the object dictionary the data structures for for managing the variables
are created but NOT the memory (this means the variable or the field) for storing the
data.

© SYS TEC electronic GmbH 2015 L-1020e_14 41

CANopen Software

<

uoissiwsuela; Odd
peojumop/peojdn 0as

T/

peojumop 0ds

<

peojdn 0ds

sng NVO

()repauina@pqo
(JgeLrepaaulyaquiod

\\\|/
()Annuzpesypqo
()108lgopesywo)

81NIN Z 0009X%0
81NIN T 0009X%0
81NIN 0 0009X%0
NIVINOQ c 0T0ZX0
Z2evad T 0T0ZX0
81NIN 0 0T0ZX0
9TLNIN € 000¢X0
9TININ Z 000¢X0
81NIN T 000¢X0
81NIN 0 000¢X0
adAL Xapul-qns | xapuj

Areuoinoip 19algo

()Anuzs1upmpqo
()108lgo@1IMmwoD

[dV USdONVYD

31A49

v

f

peal alMm

BN

Yeoyy

31Ad

uorredddy

Figure 17: Data exchange between application and object dictionary

L-1020e_14

© SYS TEC electronic GmbH 2015

42

CANopen User Layer

2.4 Object dictionary

The object dictionary is defined in three files objdict.c, objdict.h and obdcfg.h. An exact
description for the object dictionary creation is given in manual L-1024.

CANopen software comes in three standard variants. These variants are listed in the
following sections. In the listing of objects, abbreviations are used for the object type, the
data type and for the attributes. These abbreviations have the following meanings:

Object Types:

var........... Object contains a value that can be accessed per SDO or from the
application (variable).

Data Types:
U8 ...ooeeee. Unsigned 8-bit
ul6.......... Unsigned 16-hit
u32.......... Unsigned 32-bit
13 S Integer 8-bit
i16............ Integer 16-bit
132, e, Integer 32-bit
V) { SO Visible String
Attribute:
o IS read only; object can be read per SDO and read or written from the
application.
MWiriiieeeeenn read write; object can be read or written per SDO or from the application.
WO ... write only; only a write to the object is possible per SDO or from the
application.
const........ constant; object can only be read and not written per SDO or from the
application.

mapp........ object can be mapped to a PDO

store......... object can be saved in non-volatile memory (refer to section 2.7.6)

2.4.1 Example object dictionary

There are several Object Dictionaries available for standard I/O devices. The OD
ds401_3p contains 3 TPDOs and 3 RPDOs; the OD ds401_7p contains 7 TPDOs and 7
RPDOs. Otherwise the two Object Dictionaries are the same in terms of all other objects.
The OD 0401p3m has 3 TPDOs and 3 RPDOs, but as a CANopen Master it does not
contain the objects 0x100C and 0x100D. Instead it contains the supplemental objects
0x1016 (for the heartbeat consumer) and 0x1280 (for the first SDO client). O401p7m
resembles 0401p3m, except that it has 7 TPDOs and 7 RPDOs. The CANopen Kits have
two ODs available to them, 0401p2ks (for the Slave) and 0401p2km (for the Master). Both
of these contain only 2 TPDOs and 2 RPDOs and the Master is not equipped with a
heartbeat consumer (Object 0x1016 is absent).

© SYS TEC electronic GmbH 2015 L-1020e_14 43

CANopen Software

Index Sub- |Name Object |Data Attribute | Default
index Type Type Value
0x1000 device type var u32 ro 0x000F-
0191
0x1001 error register var ug ro 0
0x1003 pre-defined error field array
0 number of errors var u8 ro, rw; 0
write O to
erease
1...4 |standard error field var u32 ro 0
0x1005 COB-ID SYNC var u32 rw, store | 0x080
0x1006 communication cycle var u32 rw, store 0
period
0x1007 synchronous window var u32 rw, store |0
length
0x1008 manufacturer device var vstr const “CANopen
name Slave”
0x1009 manufacturer hardware | var vstr const “Vv1.00”
version
0x100A manufacturer software var vstr const “V5.xx"
version
0x100C guard time var ulé rw, store |0
Table 14: part of an object dictionary as example
44 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

2.5 Instanceability of the CANopen layer

The CANopen stack, the CCM module and the hardware drivers are instanceable. This
means that the function contents of CANopen can be applied to multiple data instances.
This allows for support of multiple independent CANopen interfaces on one target.

To generate instances, all global and static variables are stored in so called instance tables.
Each table entry corresponds exactly to a CANopen instance. An entry is described by a
structure. When called, the functions receive a reference to the instance to be processed
in the form of an instance pointer or an instance handle.

The number of instances and thereby the number of entries in an instance table are defined
as constants during compilation. These constants are called COP_MAX_INSTANCES for
the CANopen and are defined in the file copcfg.h. There is a separate define called
CDRV_MAX_INSTANCES for instancing the CAN drivers, which is also defined in the file
(refer to section 2.11.1). Access to the structure elements of an instance occurs exclusively
via macros.

When defining multiple instances, if a function call occurs, a reference to the instance to
be processed is always given as a parameter in the form of an address to an instance table
in COPstack modules (refer to section 2.5.2) or instance handle in CCM layer (refer to
section 2.5.1). If only one instance was defined, then this parameter is left out. In the
description of the API functions, this parameter will always be listed. The definition of the
instance parameter is given with the help of macros. These macros are deleted by the
compiler's pre-processor depending on the defined number of instances.

Example:

If only one instance is used, then the following instance parameter should be removed.
CcmConnectToNet ()

For multiple instances the instance parameter must be given.
CcmConnectToNet (HandleInstanceO);

In the file instdef.h macros are defined for the declaration and transmission of instance
parameters to functions and for access to entries in an instance table. Use of these macros
supports function writes, which are independent from the number of instances. As a rule,
the number of instances (CANopen interfaces) is defined by the application.

© SYS TEC electronic GmbH 2015 L-1020e_14 45

CANopen Software

2.5.1 Using the instance handle

An instance handle is used as a reference to the current instance if a CCM layer function
is called or if one of the application's callback functions is called.

If multiple instances are used in a CANopen application, then the instance macros have
the following contents:

The macro ... | corresponds to in the C Source

For declaration of parameters in a function's parameter list:

CCM_DECL_INSTANCE HDL tCoplnstanceHdl InstanceHandle

CCM_DECL_INSTANCE HDL tCoplnstanceHdl InstanceHandle,

CCM_DECL _PTR_INSTANCE HDL tCoplnstanceHdl MEM* pinstanceHandle

CCM_DECL_PTR_INSTANCE HDL tCoplnstanceHdl MEM* pinstanceHandle,

For handing over parameters to the function to be called:

CCM_INSTANCE_HDL InstanceHandle

CCM _INSTANCE_HDL InstanceHandle,

Table 15: Meaning of instance macros as handle

If only one instance is used then the instance macros have no content.

In an application always using more instances than one you do not have to use the macros
but you can directly use corresponding C source described in table above.

2.5.2 Using instance pointers

An instance pointer is used as a reference to the currentinstance if a function from a deeper
layer is called (i.e. SdosProcess function call through a function from the CCM module).

If multiple instances are used in a CANopen application, then the instance macros have
the following contents:

The macro ... | corresponds to in the C Source

For declaration of parameters in a function's parameter list:

MCO_DECL_INSTANCE_PTR void MEM* pinstance

MCO_DECL_INSTANCE_PTR_ void MEM* pinstance,

MCO_DECL_PTR_INSTANCE_PTR

void MEM* MEM* pinstancePtr

MCO_DECL_PTR_INSTANCE_PTR_

void MEM* MEM* pinstancePtr,

For handing over parameters to the modu

le's own function:

MCO_INSTANCE_PTR

plnstance

MCO_INSTANCE_PTR_

plnstance,

MCO_PTR_INSTANCE_PTR

plnstancePtr

MCO_PTR_INSTANCE_PTR_

plnstancePitr,

For handing over parameters to functions

not inside the module:

MCO_INSTANCE_PARAM(par)

par

MCO_INSTANCE_PARAM (par)

par,

Table 16: Meaning of Instance macros as pointer

If only one instance is used then the instance

macros have no content.

46

© SYS TEC electronic GmbH 2015

L-1020e_14

CANopen User Layer

2.6 Hints for creating an application

When using the CANopen layer, it is important to know which functions must be executed
in which operating state. This is crucial in order to attain the desired functionality.
Explanations of internal mechanics and cycles aid in development of an understanding of
the chosen solution or its limitations. Furthermore, explanations are given as to which tasks
must be performed by the user in order to achieve the desired function.

To ensure the correct function of the CANopen protocol, a specific sequence must be
adhered to when executing the functions. Otherwise it is possible that data structures won't
be present or won't be initialized, whereby a function call will result in an error or undefined
behavior. 23

The sequence for execution of the various functions is coupled with the individual NMT
state machine states. This procedure is advantageous in that the state can be described in
great detail. The NMT state machine is defined by the standard CiA 301. There is a good
deal of secondary literature available with hints and examples to help deepen your
understanding.

This section provides a general description of the structure of an application. The
application is divided into numbered areas. The following sections containing descriptions
of individual modules make references to these areas in order to specify the positions that
must be adapted for integration of the desired module or CANopen services.

2.6.1 Selecting the required modules and configuration

When creating a CANopen device, various CANopen functions and properties are required
for object entries. When you acquire a CANopen Library, the parameter of supported
services is defined and cannot be modified. However when integrating the CANopen Code,
the selection of services is configurable and can be adapted to application requirements.

Services are encapsulated in the modules within the CANopen stack. The following
overview shows which module is required by the respective CANopen service. When using
the source code, the required modules must be referenced during code generation and the
appropriate settings made in file CopCfg.h (refer to section 2.11). Modules that are listed
as base modules always have to be referenced during code generation. Optional modules
can be left out if the service they support is not required.

23: When using the 'debug’ version various verification tests are performed and in case of
an error the corresponding PRINTF() output will be generated.

© SYS TEC electronic GmbH 2015 L-1020e_14 47

CANopen Software

Service/Function Module Category
Initializing CANopen ccmmain.c Mandatory module
Managing of PDOs pdo.c or optional

pdostc.c
SYNC producer pdosync.c Y optional
SYNC consumer pdosync.c Y optional
SDO server sdoscomm.c | Mandatory module
SDO client sdoc.c optional
CRC calculation for SDO block transfer sdocrc.c optional
Heartbeat producer hbp.c optional
Heartbeat consumer hbc.c optional
Emergency producer emcp.c Mandatory module
Emergency consumer emcc.c optional
Life guarding master nmtm.c The module Nmtm.c and
Life guarding slave nmts.c Nmts.c should always be
Node guarding master nmtm.c used in an either-or
Node guarding slave nmts.c fashion.
LSS slave Issslv.c optional
LSS master Issmst.c optional
Creating communication objects for cob.c Mandatory module
message transmission
Functions for access to the object entries obd.c Mandatory module
NMT state machine nmt.c Mandatory module
High Precision Time Stamp producer hpt.c optional
High Precision Time Stamp consumer hpt.c optional
Time Stamp producer tso.c optional
Time Stamp consumer tso.c optional
Functions for accessing machine specific amixXXX.c Mandatory module
data formats for the given microcontroller
Xxx'
Driver for the applicable CAN controller cdrvXXX.c Mandatory module
(Xxx) or operating system
Interface functions for adapting the CCiXXX.c Mandatory module for
hardware-specific CAN controller any CDRV modules
connections
Baud rate table containing the supported bditabXXX.c | Mandatory module
baud rates

Table 17: Guide for selecting the required software modules

1) Do not add these files directly to your project.

Modules in the CCM layer are optional except for module CcmMain.c. The modules
support the user during configuration of the application. The user has to decide which
modules to include. An emergency producer is always supported, even if this service is
optional according to the standard CiA 301. However, practical application has shown that
for diagnosis of an error in an application, this service must be used.

48 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

The amount of supported services and protocols within a module can be further reduced
(refer to section 2.11). This is particularly interesting if very little code and data memory is
available on the target. Additional settings must be made in the file CopCfg.h. The
CANopen stack is implemented independently of any specific CAN controller. For
connection of a CAN controller, the specific driver module CdrvXxx.c and possibly another
module CciXxx.c must be included. The module CciXxx.c is required if a standalone
controller can be connected to a microcontroller in different ways. 24 Additional information
is available in the manual "CAN Drivers" (L-1023).

The baud rate table contains values for various baud rates for the baud rate registers of
the CAN controller (e.g. BTRO and BTR1 in NXP SJA1000). These values are calculated
based on the clock frequency of the CAN controller and not the crystal or oscillator
frequency. The clock frequency of the CAN controller is usually determined by dividing or
multiplying the oscillator frequency of the CAN controller or microcontroller.
2.6.2 Sequence of a CANopen application
A CANopen application has the following cycle in principle:

o Initializing the hardware

o Creating the data structure (object dictionary, Tables, Structures, Variables,
Instances) and linking the configured modules configuration of node numbers

o Initialization of services (communication parameters, creating communication
objects)

o Processing CANopen and execution of service demands from the application.

o Closing the CANopen layer, if necessary

24: Connection to an INTEL 82C527 CAN controller can be achieved via both serial or
parallel interface.

© SYS TEC electronic GmbH 2015 L-1020e_14 49

CANopen Software

-
TgtInitXxx():
initializing of hardware

l

-
CcminitCANopen():
L initializing of CANopen layer)

}
CcmConnectToNet(): \

connect to CANopen network

(initializing of communication
objects and additional

CANopen senvices by NMT

\ callback function) /

~

A
CcmProcess():
process CANopen events

b

[process application specific J

functions
no
shut down?
yes
A
| CcmShutDownCANopen(): |

3 shut down CANopen layer |

Figure 18: Sequence of a typical CANopen application

2.6.2.1 Initializing the hardware

Before the CANopen layer is initialized, the hardware must be initialized by the application.
To function correctly the CANopen requires a time basis, generated in 100us, as well as
an interface in the debug version for the output of error messages. If an error is discovered
based on a faulty configuration or parameterization, then the CANopen layer will call
standard C-function printf in some cases. The output of the serial data stream to a terminal
may need to be adapted for the target.

The global interrupt of the microcontroller is to be released, and the CAN controller's service
routine included (which involves setting the interrupt vector and the interrupt priority). Upon
delivery, target.c files for various target platforms are included with the CANopen Source
Code. There are functions in these files for initialization of a timer, the serial interface as
well as for release of the global and CAN controller specific interrupt.

50 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

Examples for the hardware initialization:

void main (void)

{

// disable global interrupt
TgtEnableGlobalInterrupt (FALSE);

// init target (timer, interrupts, ...)

TgtInit () // init general
TgtInitSerial (); // init serial interface
TgtInitTimer (); // init system time

TgtInitCanIsr () // init CAN controller interrupt

// enable global interrupt
TgtEnableGlobalInterrupt (TRUE);

}

When using an operating system, the hardware is usually initialized by the operating
system. Functions may be necessary for the initialization of the operating system.

2.6.2.2 Initializing the CANopen layer and creating the data structures

Each module in the CANopen stack or CDRV layer (CAN driver cdrvXXX.c) contains a
function for the initialization and parameterization of the module. The Init function must be
executed for each instance. This step is required in order to correctly process additional
functions within the module.

The function CcmInitCANopen executes the basic initialization of the CANopen layer. The
Init functions of the individual modules are called within this function. This provides the
conditions necessary to link application variables (i.e. for storing process data) with the
CANopen layer.

Example for initialization of the CANopen layer:

In the following example, initialization of the CANopen layer of a CANopen device is
prepared and executed with an instance. The node contains the node number 1, a baud
rate of 1 Mbit/s is selected. The clock speed for the controller is 10 MHz for a CPU
frequency of 20 MHz. When selecting the baud rate table, it is important to be sure that the
listed clock frequency refers to the clock frequency of the CAN controller and not the
oscillator frequency of the CAN controller or the CPU. For microcontrollers with an
integrated CAN controller or for stand alone CAN controllers, the clock speed can usually
be determined by dividing or multiplying the oscillator frequency.

#define NODE ID 0x41 // Node ID is 0x41

// define index to baud rate table for 1 Mbit/sec
#define BAUDRATE kBdilMbaud

// define the baud rate table for 10MHz CAN controller clock
#define CDRV_BDI TABLE PTR awCdrvBdiTablelO[9]
#define CDRV_BDI TABLE SIZE sizeof (awCdrvBdiTablelO)

© SYS TEC electronic GmbH 2015 L-1020e_14 51

CANopen Software

Each CAN identifier can receive. The parameters are stored in a tCcminitParam structure
declared as "const". The base address of the CAN controller is entered in the structure by
calling TgtGetCanBase. A function is defined (TgtEnableCaninterruptl) through the
application, which inhibits or releases the CAN controller interrupt. A callback function
(AppCbNmtEvent) is defined for processing the state changes of the NMT state machine.
The function ObdInitRam, for initialization of the internal data structures in OD, always has
to be entered.

CONST tCcmInitParam ROM CcmInitDefaultParam g =
{

NODE _ID, // node id
BAUDRATE, // index to baud rate
CDRV_BDI TABLE PTR, // baud rate table
CDRV_BDI TABLE SIZE, // size of baud rate table in bytes
OxFFFFFFFFL, // Acceptance Mask Register
0x00000000L, // Acceptance Code Register
{{0}}, // CAN controller address
TgtEnableCanInterruptl, // function pointer to
// enable CAN interrupt
AppCbNmtEvent, // pointer to NMT-Callback
// function
ObdInitRam // init function for OD

In this example all entries for the structure are fixed and cannot be changed during runtime.
Therefore the structure is stored in the ROM. If the node address or baud rate has to be
changed or configured with a DIP switch during runtime, then the structure must be stored
in RAM, so that the entries (m_blInitNodeld, m_Baudindex etc.) can be modified by the
application.

By calling the function CcminitCANopen, the CANopen layer is initialized. The first call of
CcminitCANopen is always performed with the parameter kCcmFirstinstance. This
causes the function to delete the internal instance table.

52 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

tCcmInitParam MEM CcmInitParam g;

void main (void)

{

// enable global interrupt
TgtEnableGlobalInterrupt (TRUE);

// copy default values to RAM
CcmInitParam g = CcmInitDefaultParam g;

// set address auf CAN-Controller 1 to tCdrvHwParam

// (tCdrvHwParam is a UNION, therefore the address cannot be

// set as const by compiler it must set by user)

CcmInitParam g.m HwParam.m McIoParam.m pbBaseAddr =
TgtGetCanBase (1);

// initialize first instance of CANopen
Ret = CcmInitCANopen (&CcmInitParam g, kCcmFirstInstance);
if (Ret != kCopSuccessful)
{
goto Exit;
}

Ret = CcmConnectToNet ();
if (Ret != kCopSuccessful)
{

goto Exit;
}

Exit:

Now the object dictionary is created, the entries initialized with default values (default
values can be provided when the object dictionary is defined). However, object dictionary
entries are not linked to the application. NMT state remains in Initialisation.

By calling CcmConnectToNet the CANopen Stack follows additional initialisations
whereby NMT callback function AppCbNmtEvent is called with events. Here application
may implement further initialisations and configurations of the CANopen stack. After calling
CcmConnectToNet the CANopen stack is in NMT state Pre-operational and Bootup

message has been sent (if NMT slave is implemented).

© SYS TEC electronic GmbH 2015

L-1020e_14

53

CANopen Software

2.6.2.3 Node number configuration with LSS

When using the LSS service for configuring a node number, it is important to be sure to
execute the LSS state machine before switching from NMT state Initialisation to Pre-
operational, if the node number is invalid.

If the application still has no valid node numbers following execution of CcmInitCANopen
(according to LSS specification CiA DS-305 V1.01, OxFF is defined as an invalid node
number), then the function CcmProcessLssInitState must be called cyclically in a loop.
CANopen will wait until a valid node number has been initialized via the LSS service before
doing this. Once this has occurred, then the function will return a value not equal to
kCopLsslinvalidNodelD. Now the cyclical loop can be ended and CcmConnectToNet can
be called. The NMT state machine is then started with CcmConnectToNet. While this
called is performed the NMT callback function within the application is called with various
events. Information on what needs to be done within these events is provided in
section 2.6.2.4.

Example:

Ret = CcmInitCANopen (&CcmInitParam g, CcmFirstInstance);
if (Ret != kCopSuccessful)
{
goto Exit;
}

// run LSS init state process until NodelId is valid
do

{

Ret = CcmProcessLssInitState ();

} while (Ret == kCopLsssInvalidNodeId) ;

Ret = CcmConnectToNet ();
if (Ret != kCopSuccessful)
{

goto Exit;
}

If the node number is modified again during the cyclical execution of CcmProcess, then a
re-initialization of the CANopen layer will be performed automatically (in the CCM module).
When this occurs, the events kNmtEvResetNode, kNmtEvRestCommunication and
kNmtEvEnterPreOperational will be registered again in the NMT callback function of the
application.

54 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

2.6.2.4 Initializing services and communication objects, service execution

In the previous step, the basic data structures were created and initialized. The CANopen
device contains a valid node number. The step that follows now links the application
variables to the entries in the object dictionary and initializes the services and
communication objects for the data transfer. Thus the functions to be executed are
assigned the states within the NMT state machine.

After the function CcminitCANopen has been executed, the CANopen device will be in
the NMT state machine's initialisation state.

/ Initialisation \

N\

(€

[Initialising <

/

(15)

A

[Reset Appliction |«

|ao)
»| Reset Communication]
(2
(14) Pre-Operational } (11
Y w‘
3 (4 (7
(13) (10

Stopped

6

Y &

(12) Operational]
J

Figure 19: NMT state machine according to CiA 301 V4.02

CANopen events Callback events
(1) Power-on or hardware reset kKNmtEvEnterInitialising
automatic change into Pre-operational :
(2) state after Comr?letion of Initiglisation KNmtEvEnterPreOperational
(3), (6) NMT command: start remote node kNmtEvEnterOperational
4), (7) NMT command: enter pre-operational
(5), (8) NMT command: stop remote node kNmtEvEnterStopped
8)1')(10)’ NMT command: reset node kNmtEvResetNode
(12), (13) o kNmtEvPreResetCommun?cation
(14)’ " | NMT command: reset communication kNmtEvResetCommumcatpn .
kKNmtEvPostResetCommunication
automatic change into RESET-
(15) APPLICATION state after completion of | KNmtEvResetNode
INITIALIZING
automatic change into RESET- kNmtEvPreResetCommunication
(16) COMMUNICATION state after RESET- | kKNmtEvResetCommunication
APPLICATION finished kNmtEvPostResetCommunication

Table 18: NMT state machine explanation (list of events and commands)

© SYS TEC electronic GmbH 2015

L-1020e_14

55

CANopen Software

According to the standard CiA 301 the following services are to be supported in the various
NMT states:

Communi- Initialisation Pre-operational Operational Stopped
cation
object
PDO

SDO

SYNC
Time stamp
Emergency
Boot-Up X
NMT X X X

Table 19: Supported communication objects in various NMT states [4]

XX XX
XXX XX

The function CcmConnectToNet starts the execution of the NMT state machine with the
state INITIALIZING. After a state has been closed, the state machine will shift to the next
state on its own until reaching the state Pre-operational. The function CcmConnectToNet
will then return. During execution of the individual states respective events, the modules of
the CANopen stack will be called repeatedly over the XxxNmtEvent function. Likewise a
call will be performed for the application's NMT callback function AppCbNmtEvent, if a
function has been parameterized (entry m_fpNmtEventCallback of the structure
tCcminitParam). When an NMT callback function is called, the NMT event is given as a
parameter (event will be handed over as parameter, refer to Table 18).

The function AppCbNmtEvent is called as the last function within the execution sequence
of an NMT state's XxxNmtEvent functions, allowing previously set standard values to be
modified as needed for an application.

In the following examples the function AppCbNmtEvent is called as the application's NMT
callback function. The examples are based on the condition that only one instance was
configured. When multiple instances are used then the instance parameter must be
completed.

State Initialisation:

This state is only executed one time following a power-on or reset. In this state the optional
modules' Init functions of CCM layer (such as CcminitLgs) must be executed. In this state
all application variables have to be linked to the variable entries of the object dictionary.
After this is finished, the state machine automatically goes into the reset application event.

Example:

tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent p)

{
tCopKernel Ret = kCopSuccessful;

// which event was called?

switch (NmtEvent_p)

{
// after power-on link all variables with OD
case kNmtEvEnterInitialising:

// linking of variables for CANopen with OD
Ret = CcmDefineVarTab (aVarTab g,

sizeof (aVarTab _g) / sizeof (tVarParam));

break;

56 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

Sub-state reset application:

In this event all manufacturer specific objects (from 0x2000 to Ox5FFF) and all device
specific objects (starting at 0x6000 up to 0Xx9FFF) have been reset to their power-on values
by the CANopen stack. Power-on value refers to the default value from the object dictionary
or the last value saved in the non-volatile memory. The application can overwrite these
values within this state if necessary.

Example:

tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent p)

{
tCopKernel Ret = kCopSuccessful;

// which event is called?
switch (NmtEvent_p)

{
case kNmtEvResetNode:

// reset process vars
wDigiOut = 0;

break;

Sub-state reset communication:

Here all communication parameters (starting at 0x1000 to Ox1FFF) are reset to their power-
on25 values by the CANopen stack. Power-on value refers to the default value from the
object dictionary or the last value saved in the non-volatile memory.

The communication objects for all modules in the CANopen stack are created. The
application can now redefine all PDOs. With this, all default settings are overwritten. The
state machine changes automatically to Pre-operational state after completion. A CANopen
slave signals this state transition by sending a BOOTUP message.

Example:

tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent p)

{
tCopKernel Ret = kCopSuccessful;

// which event is called?
switch (NmtEvent p)
{
// reset all communication objects (0x1000-0x1FFF)
case kNmtEvResetCommunication:
Ret = CcmDefinePdoTab ((tPdoParam GENERIC*) &aPdoTab g[0],
sizeof (aPdoTab g) / sizeof (tPdoParam)) ;
break;

25 The power-on values are the last values stored in the object 0x1010 (Save
Parameters), in as far as they are not reset to their default values with the object
0x1011 (Restore Parameters). It is up to the user to arrange the upload of object
dictionary entries into a non-volatile memory. The user is supported thereby by module
CcmStore.c.

© SYS TEC electronic GmbH 2015 L-1020e_14 57

CANopen Software

Dissenting from the NMT state machine in two additional states were implemented within
this state:

Callback event kNmtEvPreResetCommunication:
- CANopen stops active services and deletes its communication objects (COBS)
- Callback event kNmtEvResetCommunication is called next
Callback event kKNmtEvResetCommunication:
- CANopen resets communication parameters
- Callback event KNmtEvPostResetCommunication is called next
Callback event KNmtEvPostResetCommunication:

- CANopen transmits bootup message to CAN bus and changes NMT state to pre-
operational

- Callback event KNmtEvEnterPreOperational is called next

In the state PRE-RESET-COMMUNICATION all active services are ended and its
communication objects are deleted. In the state POST-RESET-COMMUNICATION the
transfer of the BOOTUP message is initiated, whereby a CANopen slave signals that the
initialization is complete. The state machine changes to Pre-operational state.

State Pre-operational:

In this state communication per SDO is possible. life guarding, node guarding or heartbeat
is executed if these services were configured by the application. With the help of SDOs,
communication parameters and mapping parameters can be modified for PDOs over the
CAN bus. The CANopen device switches to state Operational after receipt of the NMT start
remote node from a NMT master 26 or after calling the function CcmBootNetwork
respectively CcmSendNmtCommand(0x00, kNmtCommStartRemoteNode).

After the execution of this event the function CcmConnectToNet is ended. State changes
are now initiated upon receipt of NMT commands. The processing occurs within the
function CcmProcess.

The function CcmProcess must be called in a cyclical loop. The more often it is called, the
more stable the CANopen layer's reactions will be to time events.

Within the function CcmProcess, CAN messages are evaluated first and assigned to the
corresponding internal CANopen modules. If an event occurs that is important for the
application, then a callback function will be called. Most of these callback functions are
located in the CCM module or are components of the application and can therefore be
adapted by the user. Furthermore, the function CcmProcess tests a few time cycles, for
which a CAN message may have to be sent under certain circumstances. For example,
PDOs may be sent following completion of the event timer. Likewise an SDO abort is sent
if the SDO server expects a message from the SDO client during a segmented transfer but
does not receive one.

26 : For network applications where no NMT master is present changing to Operational
state can be forced by calling the function
NmtExecCommand (KNmtCommEnterOperational).

58 © SYS TEC electronic GmbH 2015 L-1020e_14

CANopen User Layer

State Operational:

The transmission from Pre-operational to Operational state generates a transfer of all
asynchronous TPDOs. In this state PDOs are transferred if an event occurs (such as event
timer expired, SYNC message received, modification of process variables). If PDOs are
received, then their data is put into the OD and the application will be notified by calling the
corresponding callback function containing applicable parameters.

State Stopped:

In this state the execution of all services are stopped with the exception of NMT services
(this also includes node guarding and heartbeat).

2.6.2.5 Shutting down a CANopen application

The CANopen application is closed by executing the function CcmShutDownCANopen.
This function calls the function XxxDeletelnstance for each module that is configured in
the CANopen stack. The modules finish their services and delete the communication
objects. The data structures of the CANopen layer are invalid after the function
CcmShutDownCANopen has been executed.

© SYS TEC electronic GmbH 2015 L-1020e_14 59

This document has been truncated!

If you wish to receive a complete copy of this document
please contact us via e-mail:
support@systec-electronic.com

© SYS TEC electronic GmbH 2015

Notes on CANopen certification

4 Notes on CANopen certification

For CANopen certification with CiA, the following should be noted:

Only a device can be certified and not software

The CANopen stack was certified with the CANopen-Chip from SYS TEC electronic
GmbH.

Certificate No.: CiA200002-301Vv30/11-013

Thus we can demonstrate that certification with our CANopen stack is possible.

However, certification also depends on a number of factors, that we cannot influence
directly.

Therefore please note the following:

The entries in the OD must match those in the *.EDS file. This effects above all the
device name (Index 0x1008, the hardware and software version (Index 0x1009 or
0x100A) etc.

The number of PDOs must match the PDOs actually present in the OD

All indices that are present in the software must also be entered in the EDS file. There
can be no hidden entries.

The entries in Index 0x100C and 0x100D (life guarding) must have a default setting of
Zero.

The Index 0x1003, Sub-index 0 can only be written to with a 0 and then the error field
has to be erased. Writing a number that is greater than 0 will result in an error.

The mapping parameter sub-indexes 0 (e.g. 0x1600,0, 0x1601,0, 0x1A00, O etc.) can
be written with values up to 64 max. If the maximum value is exceed an error message
will result. Since our CANopen software supports byte-mapping in its default setting,
all values >8 are rejected.

It must always be possible to answer RTR-queries sent to the node (regardless of
TXType).

If the criteria in aforementioned points are met, then certification should be easy.

Note:

We verify our software ourselves with the current version of the CiA Conformance Test
Tool. We can also perform pretests of customer devices in house.

© SYS TEC electronic GmbH 2015 L-1020e_14 325

CANopen Software

326 © SYS TEC electronic GmbH 2015 L-1020e_14

Index

Index
AMI e 321
AMLI Interfaceccccoevcviveeiiiiiieien 321
Application-specific layer.............c.c.oeoee. 36
Big Endiancccvvviiiiiiiiiiee 321
bit rate table...........ccoccvi 317
BOOTUP .o 25

callback function

AppCbNmtEventUnfiltered
AppCbUnknownCobld ...
CcmCbEmccEvent
CcmCbEmcpEvent
CcmCbError
CcmCbHbcEvent..
CcmCbLgsEvent
CcmCbLssmEvent
CcmCbLsssEvent.
CcmCbNmtEvent.....
CcmCbNmtmEvent
CcmCbRestore
CcmcCbStore..........
CcmCbStoreLoadObject
CcmCbSyncReceived....
tCcmCbUnknownCobld
tCcmNmtEventCbunfiltered...........ccccoovieiiiiieines 77

Callback-Function
LSS-Callback-Functionccccvveeviieiiniiiciiiieene 151
Master-Callback-Function ..
NMT-Commands
Unknown CAN-messages

CAN DIt rate ..o 317
CAN ArVEF ..o 317

SEIECHION ... 315
CAN ERROR LEDcoovvvivriiinnnn. 139, 142
CAN RUN LED ..., 138, 141
CANopen stack.........ccccoevvvvvviiiiiiiiicne, 34
CANopen stack configuration.................. 250
CANopen stack functions 155
COIXXX.C ettt 315
CCM e 36
CArVEGL. N 317
CArVXXX.N.ooei e 315
Certification........ccoeeeeiiiiniiiiiiieeeeeee 325
CIA 303-3..ciieiceiee e 138
CiA-302 .. 257

CiA-302-7 oo 87
CiA-303-3 ..ottt 257
COB callback function..................... 212, 216
communication objectcccceeevrriiinnns 212
Communication parameters............ 153, 157
Communication profilecccccccoeviiiiinnns 29
Configuration

CCM_DR303_USE_BICOLOR_LEDcccoomrrrrnnn. 143

CC2A5_7MODULE_INTEGRATION78, 89, 93, 103, 139,

CCM_PROCESS_RECV_COUNT
CCM_STORE_FILE_SYSTEM.......
CCM_USE_PDO_CHECK_VAR
CCM_USE_STORE_RESTORE
CDRV_CAN_SPEC
CDRV_IDINFO_ALGO .
CDRV_IDINFO_ENTRIES...
CDRV_IMPLEMENT_RTR
CDRV_MAX_INSTANCESovvorreerrerrerrernenn.
CDRV_MAX_RX_BUFF_ENTRIES_HIGH
CDRV_MAX_RX_BUFF_ENTRIES_LOW .
CDRV_MAX_RXPOLLINGcccorm.....
CDRV_MAX_TX_BUFF_ENTRIES_HIGH.
CDRV_MAX_TX_BUFF_ENTRIES_LOW
CDRV_TIMESTAMP
CDRV_USE_BASIC_CAN.........

CDRV_USE_DELETEINST_FUNC ..
CDRV_USE_ERROR_ISR

CDRV_USE_HIGHBUFF..

CDRV_USE_IDVALID ..
CDRV_USE_NO_ISR.......
CDRV_USE_NO_RXBUFF .
CDRV_USE_NO_TXBUFF..........
CDRV_USE_SETBAUDRATE_FUNC .
CDRV_USED_CAN_CONTROLLER..
CDRVLIN_USE_NEW_HWPARAM_API ...
CDRVWIN_USE_CYCLIC_TX_INTERFACE .. 266, 269
COB_IMPLEMENT_SET_PARAMcco.ccvvvemnenn. 269
COB_MAX_RX_COB_ENTRIES....................
COB_MAX_TX_COB_ENTRIES ...
COB_MORE_THAN_128_ENTRIES ...
COB_MORE_THAN_256_ENTRIES
COB_SEARCHALGO
COB_USE_ADDITIONAL_API
COB_USE_CB_UNKNOWN_COBID..
COB_USE_CYCLIC_TX_INTERFACE
COB_USE_RTR_CONSUMER
COP_CB_DIRECT_CALL
COP_MAX_INSTANCES
COP_USE_CDRV_FUNCTION_POINTER62, 252
COP_USE_DELETEINST_FUNC
COP_USE_OPERATION_SYSTEM.
COP_USE_SMALL_TIME
COP_USE_TGTOS_API
DEF_DEBUG_LVL
EMCC_MAX_CONSUMER
EMCP_CHECK_COBID_ORDER..
EMCP_ENABLE_ERROR_WRITE ...
EMCP_USE_EVENT_CALLBACKccoocevvven.n. 277

© SYS TEC electronic GmbH 2015 L-1020e_14 327

CANopen Software

EMCP_USE_INHIBIT_TIME
EMCP_USE_PREDEF_ERROR_FIELD
HBC_IGNORE_BOOTUP
HBC_MAX_EMCY_VALUES .
HBC_USE_ADDITIONAL_API
LSSM_CONFIRM_TIMEOUT
LSSM_PROCESS_DELAY_TIME
NMTM_MAX_SLAVE_ENTRIES .
NMTS_USE_CB_MONITOR_ALL_COMMANDS... 277
NMTS_USE_LIFEGUARDING . 93,276
NMTS_USE_NODEGUARDING ..
OBD_CALC_OD_SIGNATURE
OBD_CHECK_FLOAT_VALID
OBD_CHECK_OBJECT_RANGE ..
OBD_IMPLEMENT ARRAY_FCT ..
OBD_IMPLEMENT_DEFINE_VAR
OBD_IMPLEMENT_INIT_MOD_TAB.
OBD_IMPLEMENT_PDO_FCT..........
OBD_IMPLEMENT_READ_WRITE ..
OBD_INCLUDE_A000_TO_DEVICE_PAR
OBD_SUPPORTED_OBJ_SIZE
OBD_USE_DYNAMIC_OD
OBD_USE_STRING_DOMAIN_IN_RAM....
OBD_USE_USTRINGcc..covvmrvrrrrrnnnn.
OBD_USE_VARIABLE_SUBINDEX_TAB)
OBD_USER_OD....cc..ovmvurveerrssrinernns . 207
PDO_CHECK_COBID_ORDER
PDO_DISABLE_FORCE_PDO .
PDO_GRANULARITY
PDO_IMPLEMENT_CHECK_VAR
PDO_MAX_EMCY_VALUES
PDO_MORE_THAN_255_ENTRIES..
PDO_PROCESS_TIME_CONTROL ..
PDO_USE_ADDITIONAL_API.....
PDO_USE_BIT_MAPPING..........
PDO_USE_DEF_LINKING_IN_OD
PDO_USE_DEF_MAPPING_IN_OD
PDO_USE_DUMMY_MAPPING
PDO_USE_ERROR_CALLBACK.
PDO_USE_EVENT_TIMER..................
PDO_USE_MPDO_DAM_CONSUMER
PDO_USE_MPDO_DAM_PRODUCER ...
PDO_USE_MPDO_SAM_CONSUMER ...
PDO_USE_MPDO_SAM_PRODUCER ...
PDO_USE_REMOTE_PDOS
PDO_USE_STATIC_MAPPING
PDO_USE_SYNC_CONS_COUNTER....
PDO_USE_SYNC_PDOSccooo........
PDO_USE_SYNC_PROD_COUNTER.
PDO_USE_SYNC_PRODUCER........

PDO_VARCB_BEFOR_ENCODE...
SDO_BLOCKSIZE_DOWNLOAD
SDO_BLOCKSIZE_UPLOAD
SDO_BLOCKTRANSFER..
SDO_CALCULATE_CRC ..
SDO_MAX_CLIENT_IN_OBD.......orvooreeerrrrrerrnenn
SDO_SEGMENTTRANSFER
SDO_USE_SDO_ROUTER...

SDOC_DEFAULT _TIMEOUT

286
286
285

SDOR_MAX_ROUTING_ENTRIES 290
SDOR_ROUTER_FORWARDING .. 290
SDOR_SDO_CLIENT_INDEX .. . 290
SDOS_DEFAULT_TIMEOUT............. .288

SDOS_MULTI_SERVER_SUPPORT
SDOS_USE_ADDITIONAL_API
TARGET_HARDWAREc.ccoeviiinnns

Constant

CCM_LSSFLAGS_ALL
CCM_LSSFLAGS_SLAVE_ADDRESS.
CCM_MODULE_DR303 3
CDRV_IDINFO_ALGO_BITFIELD ..
CDRV_IDINFO_ALGO_FULLCAN..
CDRV_IDINFO_ALGO_IDLISTEXT ...
EMCP_EVENT_ERROR_DELETEALL....
EMCP_EVENT_ERROR_LOG
FUNCTION_BREAK_TIME

FUNCTION_CALL_TIME
FUNCTION_NO_CONTROL ..
kCobTypForceRmtRecv ...
kCobTypForceSend...
kCobTypRecv
kCobTypRmtRecv
kCobTypRmtSend ..
kCobTypSend.........
kDr303ErrorBusoff.....
kDr303ErrorControlEvent .
kDr303ErrorLssProcess....
kDr303ErrorSyncTimeout .
kDr303ErrorWarningLimit .
kDr303NoError
kDr303RunDeviceOperational
kDr303RunDevicePreOperational
kDr303RunDeviceStopped
kDr303RunLssProcess.
kDr303RunRese......
kLssmCmdIinquireNodeld ...
kLssmCmdInquweProductCode .
kLssmCmdInquireRevisionNr
kLssmCmdInquireSerialNr
kLssmCmdInquireVendorld .
kLssmEvActivateBitTiming...
kLssmEvActivateBusContact......
kLssmEvDeactivateBusContact.
kLssmEvldentifyAnySlave ...
kLssmEvinquireData
kLssmEvModeSelective....
kLssmEvResult..........
kLssmEvTimeout....
kLssModeConfiguration
kLssModeOperation ..
kLssModeSelective....
kLsssEvActivateBitTiming....
kLsssEvActivateBusContact
kLsssEvConfigureBitTiming .
kLsssEvConfigureNodeld
kLsssEvDeactivateBusContact ..
kLsssEVEnterConfiguration..
kLsssEvEnterOperation....
kLsssEvPreResetNode
kLsssEvSaveConfiguration
kNmtCommEnterOperational
kNmtCommEnterPreOperational
kNmtCommEnterStopped.
kNmtComminitialize..........
kNmtCommResetCommunication.
kNmtCommResetNode.....
kNmtCommStartRemoteNode
kNmtCommStopRemoteNode ...
kNmtErrCtrIEvBootupReceived
kNmtErrCtrlIEvHbcConnected
kNmtErrCtrlIEvHbcConnectionLost......
kNmtErrCtrIEvHbcNodeStateChanged
kNmtErrCtrlIEvLgConnected....
kNmtErrCtrlEvLgLostConnection ..
KNmtErrCtrlEvLgMsgLost
KNmtErrCtrlEvLgNoAnswer
kNmtErrCtrlIEvLgNodeStateChanged
KNmtErrCtrIEvLgSuspended...........
kNmtErrCtrlEvLgToggleError ..
kNodeStatelnitialisation
kNodeStateOperational
kNodeStatePreOperational ..
kNodeStateStopped
kObdAccVar
kObdCommClear-....
kObdCommCloseWrite.
kObdCommOpenRead
kObdCommOpenWrite .
kObdCommReadObj .
kObdCommWriteQbj
kObdDirlnit
kObdDirLoad
kObdDirRestore
kObdDirStore
kObdEvAbortSdo

328

© SYS TEC electronic GmbH 2015 L-1020e_14

kObdEvCheckEXxist ..
kObdEvInitWrite
kObdEvPostRead
kObdEvPostWrite

kObdEvPreRead
kObdEvPreWrite
kObdEVWrStringDomain209
kObdPartAll203
kObdPartDev. ..203
kObdPartGen ..203

kObdPartMan
kObdPartUsr
kSdocTransferFinished
kSdocTransferNotActive
kSdocTransferRunning
kSdocTransferRxAborted
kSdocTransferTxAborted ..
LSS_INVALID_NODEID ...
OBD_OBJ_SIZE_BIG......cccoevevveeeereeresrererereeerenens 270
OBD_OBJ_SIZE_MIDDL270
OBD_OBJ_SIZE_SMALL270
SDO_CRC_POLYNOM
SDO_CRC_TABLE..

SDO_NO_CRC

copefg.h.

CRC calculationcccccvvmrieeeeeeeennnnnne 176
DAM ..o 282, 327
data arrayooooeeviiiiiiiiiiiin 137, 198
data StruCtureS........occeeevvveeriieeeinnnns 40, 155
Development Environment..................... 293
Directory Structure............cooeeeeeeiiiiiiiennnnnns 39
dynamic memory management 319

EMCC callback function113, 114, 116, 225,
227

Emergency CONSUMErcocvvvieeeiennennn. 225
Emergency error codes.............cccoevveeens 249
Emergency objectccccoviiiiiiiiinn, 21
Emergency producer.............ccccuvvvveeeennnn. 228
Error callback function..............ccccvveeeeeenn. 71
EITON COAESvvviiieiiiiiiie e 241
error handling............cvvviiiiiiiiiin 31
frEE e 319
Function

Ccm303Initindicators
Ccm303Processindicators
Ccm303SetErrorState
Ccm303SetRunState ..
CcmBootNetwork....................

CcmClearPreDefinedErrorField .
CcmConfigEmcp..
CcmConfigHbp .
CcmConfigLgm....
CcmConfigLgs
CcmConfigSyncConsumer
CcmConigSyncProducer...
CcmConnectToNet ..
CcmConvertFloat.

CcmbDefinePdoTab 89
CcmbDefineSlaveTab
CcmbDefineStaticPdoTab..........cccoovvveiviiieeiiiieeeiiens 136

CcmbDefineVarTab
CcmEmccDefineProducerTab ...
CcmEnterCriticalSectionPdoProcess.
CcmExecNmtCommand

CcmGetNmtState
CcmGetNodeld
CcmGetSyncCounter
CcmHbcDefineProducerTab.
CcmInitCANopen
CcminitEmcc..
CcminitHbc .
CcmlnitLgs
CcmlnitNmtm
CcminitNmtmEx .
CcminitStore
CcmlinitSyncConsumer

CcminitSyncConsumerEx........ ..113
CcmLeaveCriticalSectionPdoProcess ..311
CcmLockCanopenThreads...... ...299
CcmLockedCopyData........ ..300

CcmLssmConfigureSlave ..
CcmLssmidentifySlave
CcmLssminquireldentity
CcmLssmSwitchMode.....
CcmPdoSendMPDO ...
CcmProcess..........ocueeee.
CcmProcessLsslnitState
CcmReadObject................
CcmRegisterErrorCallback

CcmSdocAbort

CcmSdocDefineClientTab . .79
CcmSdocGetState............. .84
CcmSdoclIndicateNetwork . .87
CcmSdocStartTransfer82
CcmSendEmergency

CcmSendNmtCommand

CcmSendThreadEvent

CcmShutDOWNCANOPENeveieiiiieeiiieeeieee e 66
CcmsSignalCheckVar 109
CcmSignalStaticPdo..........

CcmStoreCheckArchivState .
CcmStoreRestoreDefault...
CcmTriggerNodeGuard
CcmUnlockCanopenThreads...
CcmWriteObject.....
CobCheck
CobDefine
CobProcessRecvQueue.
CobSend

CobUndefine
EmccAddinstance

EmccAddProducerNode .
EmccDeletelnstance
EmccDeleteProducerNode
Emcclnit
EmccNmtEvent ..
EmccSetEventCallback ..
EmcpAddinstance....
Emcplnit.............
EmcpNmtEvent ..
EmcpSendEmergency
HbcAddinstance........
HbcDeletelnstance
Hbclnit......
HbcNmtEvent.
HbcSetEventCallback..
HbpAddInstance
HbpDeletelnstance
Hbplnit
HbpNmtEvent.
HbpProcess
NmtExecCommand ..
NmtmAddSlaveNode
NmtmConfigLgm
NmtmDeleteSlaveNode
NmtmGetSlavelnfo
NmtmProcess
NmtmSendCommand
NmtmTriggerNodeGuard

© SYS TEC electronic GmbH 2015 L-1020e_14

329

CANopen Software

NmtsProcess
NmtsSendBootup... .219
NmtsSetLgCallback .. .220

ObdAccessOdPart
ObdDefineVar
ObdGetEntry...
ObdGetNodeld....
ObdGetNodeState
ObdReadEntry
ObdRegisterUserOd 207
ObdWriteEntry

PdoAddinstance
PdoDefineCallback
PdoDeletelnstance ...
PdoForceAsynPdo.
Pdolnit
PdoNmtEvent
PdoProcessAsync.....
PdoProcessCheckVar ..
PdoProcessSync 196

PdoSendMPDO .. .238
PdoSendSync........ .. 196
PdoSetSyncCallback .197
PdoSignalDynPdo..... .193
PdoSignalStaticPdo 199
PdoSignalVar............... .194
PdosStaticDefineVarField . .199
SdocAbort....... .185

SdocAddInstanc
SdocDefineClient ...
SdocDeletelnstance..

SdocGetState 183
SdoclndicateNetwol ... 185
Sdoclnitccoveeeenne ... 176
SdoclnitTransfer . .181
SdocNmtEvent

SdocProcess

SdocUndefineClient ..
SdosAbort..............

SdosNmtEvent
SdosProcess
SdosUndefineServer. .170

TgtCalcCrc16......
TgtCanlsrxxx

TgtCavCheckValid 133
TgtCavClose....... .
TgtCavCreate . .127
TgtCavDelete.. .128
TgtCavGetAttrib .. .132
TgtCavlinit....... . 126
TgtCavOpen 128
TgtCavRestore.... .131
TgtCavShutDown .126
TgtCavStore130
TgtEnableCaninterrupt. .. 320
TgtEnableGloballnterrupt ... 319
TgtGetCanBase........... ... 320
TgtGetTickCount. .320
Tatlnit319
TgtInitCanlsr .320
TgtInitSerial . .. 319
TgtInitTimer 320
TgtMemCpy . 19, 320
TgtMemSet .. 319, 320
TgtTimerlsr

GLOBAL.H
Hardware-specific layer..............cccccveeene 36
HBC callback function...... 121, 124, 231, 233

heartbeatccviiiiiiiiii,
heartbeat consumer

heartbeat Producercccoovvvieiiiiiiiiiee s 27
heartbeat ProduCErc.wereeeeerrreeesereeseeeans 234
Indicator Specification..................... 138, 257
instance handleccccceiviiiiiiiiineen 46
INStaNCEe POINLETSueveriiiiiiiiieee e 46
Intel Format.........ccoevvvvveeieiiiiieee 321
Kernel Mode Driver...........ccccoouvee... 296, 301
layer setting ServiCe..........ccoceeeeeeeiiiiiienne, 22
Lgs callback function 93, 94, 220
life guarding.......ccccoceevieeeeeiiiieeeeeen 26
LINUX oo 296
Little Endianccovevviiiieeiiiiiee e, 321
LSS e 22
LSS addressS.......cooevvveveiiiieiiieeeennn, 145, 147
LSS mastercccovvvviiiiiiiiiieieeee, 22,144
LSS MOUE ... 23
LSS slave......ccovviiiieiiiiiiieiiiiieees 22,144
Macro
CCM_CONVERT_LSSCMD_TO_LSSFLAG........... 147
COP_FREE ..319

COP_MALLOC.
COP_MEMCPY .
COP_MEMSET ...oovvvrrrrernenn 319
TGT_CONFIG_CANOPEN_LEDSooooovrvrerrnnen. 143
TGT_SWITCH_ERROR_LED.....
TGT_SWITCH_RUN_LED ..o 143

MAllOC.....coviiiiiiiee e 319

Master callback function103, 104, 106, 107,
225

Master callback function 221

memory specifier

module
CavFile
Ccm3083...
CcmBoot
CcmDfPdo
CcmEmcec...
CcmEmcep...
CcmFloat

CcmMain.....
CcmMPdo ..
CcmNmtm ..
CcmObj ...
CcmSdoc..........

330 © SYS TEC electronic GmbH 2015 L-1020e_14

Index

CCMSNPUO ... 109
CcmStore 95
CcmStPdo.... ..136
CcmSync...... ..109
CDRV........... ... 36
COB......... .212
EMCC....... ..225
EMCP....... ..228
HBC231
HBP.......... ..234
MPDO237
NMT217
NMTM221
NMTS....... ..219
OBD200
PDO oo 186
PDOSTC....... 198
SDOC ..ottt 171
SDOS....... ..155
TOECAV. ..ttt 125
Motorola Format...........cccccevvvviiiiviiieeennnn. 321
MPDO....coiiiiieei e 282, 327
Network Management.............cccvvvveeeeeennn. 25
NMT
Initialisation..........ccccoeviiiiiiiiii
Operational...........
Pre-operational .
StOPPEA. ...

NMT callback function54, 56, 67, 70, 81, 153,
217

NMT commandcccooeeevveinneennene 217, 220
LY I = o] R 72
NMT state machine..................... 25, 72,217
node guarding........ccooeeeeeeeeeeeieeieeeeeeee 26
Node NUMDbBETovvviiiiiiiiiiieeieeeeeeceee, 206
Node State.......ccvvveeeveieiiieeeiieeeeeeee, 206
NTM

Initialisation..........c.cooeveiiiiiieeee e

Operational...........

Pre-operational

SEOPPEA ...ttt

Object callback function91, 97, 98, 157, 173,
201, 202, 207

Object callback functioncceeee.e. 165
object dictionary...........ccccvvviiieenneeennn, 30, 43

CONFIQUIALION ... 292
OD for I/O deviCesccccvvevviiieeiiiiiis 43
Operating SYStemscccccvvvveeereeeeennnnnns 293
PDO ..ot 13, 186, 257
PDO callback function............... 90, 188, 192
PDO configuration........cccccceeeeeeeeeeeeenn. 57, 89
PDO €ITOrcoviiiiiiiiiiiieiiee e 73
PDO eventtimeccccuvevenneee. 58, 188, 279
PDO inhibit time...........ccocccvniiieinns 19, 188

PDO linkingcoveevieiiiiiiieieiiiiieees 13, 58, 89
PDO mapping.....c.ooeeeeeeeeeeiiiiiieenens 14, 58, 89
PDO Receive Notification........................ 188
PDO Remote Frame.............ccooecvvvvvennn. 280
PDO Send Notification..............ccccuvvveeeen. 188
PDO Synchronization............... 110, 111, 196
PDO transmission...... 14, 188, 193, 194, 195
pre-defined connection set.............cc.uue... 25

Process data object

process variables.............ccciiiiiiiinns
PXROS ...
reset communication

reSet NOAEcoovvviiiiiiiee e 90
FEtUIN COOESovveiriiiiiiiiiriice e 241
SAM oo 282, 327
SDO i 19
SDO abort codes..........ccovvvveiiieiiiiniinns 248
SDO block transferccooeceuvvnnenn. 163, 176

SDO callback function82, 84, 86, 176, 181,
182, 184, 185

SDO ClIENt v 171
SDO client creation............ccceeveevicniieennnns 173
SDO clienttable...........cccovvveeeiieeiiiis 172
SDO downloadccceeeeriiiiriiiiiiiieens 160
SDO expedited download 174
SDO expedited upload.............ccccoeveuenne 175
SDO segmented download 174
SDO segmented upload................eeeeennn. 175
SDO transfercccovcevveeiiiiiiiciiceee 159
SDO upload........ccoooviiiiiiiiiiiiiiiiiin 162
SDO_CRC_POLYNOMcccoviiiiiiiiieees 163
SDO_CRC_TABLEooveeeeeeeeeeeeeeenn, 163
SDO_CRC_TARGET....ccceiiiiiieeiiiiiieeees 163
SDO_NO_CRC...o.ovivvrerseereeeeenn 163
SDOC data Structures..........cccceeeevvrinenns 172
SDO-Gateway

Sending PDOs

Service data object...........evvvveiiiiiiiiiieeenn. 19
Software structure...........cccveeeveeeiiiiiiiinns 33

© SYS TEC electronic GmbH 2015 L-1020e_14 331

CANopen Software

static PDO mapping ... 35, 136, 186, 198, 281

Store callback function...................... 96, 100
Structure
tCemiInitParameevveeveeeeieeeeeeeeeeeeeeeeeeeees 61, 305
TCODCAIVICE . 253
tCODPAramccveeviiiiiiiiic 213
tEmcParam..... .116

tHbcProdParam .

tLinuxParam 297
ELSSAAUIESS ...ttt 145
TLSSCDPAramccovuveiiiiiiieiiiee e 151
tLssmBitTiming 147

tLssmidentifyParam ..
tLssmResult..........

IMPAOPAramM.......oeeeiiiiieciiie e siee e 238
INMMSIAVEINTO ... 224
tNmtmSlaveParam .. 222
tObdCbParam....... . 208
tObdCbStoreParam 100
tObdVSrNGDOMAINcoovviieiiiiie e 209
TPAOEITON ...t 73
tPdoParam...... ... 90
tPdoStaticParam... . 137
tSdocCbFinishParam .. 182
tSAOCINItPAraMcoovvviiieiiiie e
tSdocNetworkParam

tSdocParam..............

tSdocTransferParam.

tSAOSINItPAramooovviiiieiciie e

ESAOSPArameviiiiiiiieeiieee e 169
tvarParam
WINAOWSParamcccovvviiieiiiiiieiic e 305

SYNC callback function109, 110, 111, 187,
197

Synchronization object.............ccccvvvveeeenn. 21
TArgeL.Cunieiiiiie e 319
target.N. .. 319
Telegram Table ... 32
Time stamp objectccevvvveeeeeeiiiiiiiiins 21
Transmission Protocols............ccccvveevvnnne 30
Type

ESAOCSLALE. ..o 85

ATHFAPTIONIEY ... 306

EVXDTYPE oo 306
UsSer Layer......ccoouviiiiieiiiiieeeeee e 33
Variable callback function 40, 68, 188
WINAOWSoeeiiiiiiiiiiic e 301

332 © SYS TEC electronic GmbH 2015 L-1020e_14

Glossary

6 Glossary

User Layer:
CiA 301:
Framework:
CiA 302:
CiA 304:

Communication profile

Device profile
CiA 401

Object dictionary (OD):

Communication object:

TPDO

RPDO

Tx-Type

MPDO

DAM

SAM

Definition of communication profile and application layer

Framework for programmable CANopen devices
Framework for safety relevant communication

Specification of transmission protocols, communication

objects, data objects

Specification of device-specific services and properties
CiA Draft Standard 401

Device profile for generic 1/O modules

The object dictionary (OD) is the main data structure of a
CANopen devices for storage of all device data. It serves as a
binding element between the application and the
communication layer. Any OD entry is address via an index
and a sub-index.

Object for transmitting data between CANopen devices.

Communication object for sending process data (Transmit
Process Data Object)

Communication object for receiving process data (Receive
Process Data Obiject)

PDO transmission type. This always corresponds to sub-index
2 of the PDO communication parameter (object index 0x1400
to Ox15FF and 0x1800 to Ox19FF).

Multiplexed PDO — Enables the transmission of process data
in an SDO-like manner. It is possible to transmit data to one or
multiple devices simultanously without having a PDO for each
single object.

Destination Address Mode — MPDO mode where the producer
adresses the destination object in the consumer’s OD.

Source Address Mode — MPDO mode where the producer
gives the address of the source object in the local OD. The
producer has a Scanner-list containing all the objects to be
sent. The consumers have a corresponding dispatcher list.
This list connects each producer's source object to a
destination object in the consumer’s OD.

© SYS TEC electronic GmbH 2015

L-1020e_14 333

CANopen Software

7 References

(1]

(2]
(3]

[4]

(5]

(6]

[7]

,CANopen User Manual“, Software Manual, SYS TEC electronic GmbH, L-1020e,
this manual

,CAN driver®, Software Manual, SYS TEC electronic GmbH, L-1023e

»,CANopen Objekt Dictionary”, Software Manual, SYS TEC electronic GmbH,
L-1024e

,CANopen - Application Layer and Communication Profile“, CiAl 301 Work Draft,
Version V4.02.0.72, Juny 2012

,CANopen - Framework for CANopen Managers and Programmable CANopen
Devices®, CiA! Draft Standard Proposal 302, V4.1, February 2009

»,CANopen - Interface and Device Profile for IEC 61131-3 Programmable Devices*,
CiA! Draft Standard 405, V2.0, 21. 05. 2002

,CANopen - Device Profile for Generic 1/0 Modules®, CiA® Draft Standard 401,
V3.0, June 2008

1 CiA CAN in Automation e.V.

334

© SYS TEC electronic GmbH 2015 L-1020e_14

References

© SYS TEC electronic GmbH 2015 L-1020e_14 335

USB-CANmodul

Document: CANopen Software Manual
Document number:L-1020e_14, September 2015

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:
Customer number:

Name:

Company:

Address:

Return to:
SYS TEC electronic GmbH
Am Windrad 2
D-08468 Heinsdorfergrund
GERMANY

Fax : +49 (0) 3765 / 38600-214

© SYS TEC electronic GmbH 2015 L-1020e_14

Suggestions for Improvement

© SYS TEC electronic GmbH 2015 L-1020e_14

	Preface
	1 CANopen Fundamentals
	1.1 What is CANopen?
	1.2 Communication objects (COB)
	1.2.1 Process data object (PDO)
	1.2.1.1 Mapping parameters – What is the structure of a PDO?
	1.2.1.2 Communication parameter for PDO
	1.2.1.3 COB-ID (CAN identifier, sub-index 1)
	1.2.1.4 Transmission type (sub-index 2)
	1.2.1.5 Inhibit time (sub-index 3)
	1.2.1.6 Event time (sub-index 5)

	1.2.2 Service data object (SDO)
	1.2.1 Synchronization object (SYNC)
	1.2.2 Time stamp object (TIME)
	1.2.3 Emergency object (EMCY)
	1.2.4 Layer setting service (LSS)

	1.3 Network Management (NMT)
	1.3.1.1 NMT state machine
	1.3.1.2 Node guarding
	1.3.1.3 Life guarding
	1.3.1.4 Heartbeat
	1.3.1.5 Heartbeat producer
	1.3.1.6 Heartbeat consumer

	1.4 CANopen communication profile
	1.5 Transmission protocols
	1.6 Object dictionary (OD)
	1.7 Error handling and reporting
	1.8 Telegram table (pre-defined connection set)

	2 CANopen User Layer
	2.1 Software structure
	2.1.1 CANopen stack
	2.1.2 Hardware-specific layer
	2.1.3 Application-specific layer

	2.2 Directory structure
	2.3 Data structures
	2.4 Object dictionary
	2.4.1 Example object dictionary

	2.5 Instanceability of the CANopen layer
	2.5.1 Using the instance handle
	2.5.2 Using instance pointers

	2.6 Hints for creating an application
	2.6.1 Selecting the required modules and configuration
	2.6.2 Sequence of a CANopen application
	2.6.2.1 Initializing the hardware
	2.6.2.2 Initializing the CANopen layer and creating the data structures
	2.6.2.3 Node number configuration with LSS
	2.6.2.4 Initializing services and communication objects, service execution
	2.6.2.5 Shutting down a CANopen application

	2.7 Description of CCM layer functions
	2.7.1 Description of module CcmMain
	1.1.1.1
	2.7.1.1 Function CcmInitCANopen
	2.7.1.2 Function CcmShutDownCANopen
	2.7.1.3 Function CcmConnectToNet
	2.7.1.4 Function CcmDefineVarTab
	2.7.1.5 Function CcmProcessLssInitState
	2.7.1.6 Function CcmProcess
	2.7.1.7 Function CcmCbNmtEvent
	2.7.1.8 Function CcmCbError
	2.7.1.9 Function CcmCbLsssEvent
	2.7.1.10 Function CcmRegisterErrorCallback
	2.7.1.11 Function CcmGetNmtState
	2.7.1.12 Function CcmGetNodeId
	2.7.1.13 Function CcmExecNmtCommand
	2.7.1.14 Callback-Function for unknown CAN-Messages
	2.7.1.15 Callback-Function for NMT-Commands

	2.7.2 Description of module CcmSdoc
	2.7.2.1 Function CcmSdocDefineClientTab
	2.7.2.2 Function CcmSdocStartTransfer
	2.7.2.3 Function CcmSdocGetState
	2.7.2.4 Function CcmSdocAbort
	2.7.2.5 Function CcmSdocIndicateNetwork

	2.7.3 Description of module CcmDfPdo
	2.7.3.1 Function CcmDefinePdoTab

	2.7.4 Description of module CcmObj
	2.7.4.1 Function CcmWriteObject
	2.7.4.2 Function CcmReadObject

	2.7.5 Description of module CcmLgs
	2.7.5.1 Function CcmInitLgs
	2.7.5.2 Function CcmConfigLgs
	2.7.5.3 Function CcmCbLgsEvent

	2.7.6 Description of module CcmStore
	2.7.6.1 Function CcmInitStore
	2.7.6.2 Function CcmStoreCheckArchivState
	2.7.6.3 Function CcmCbStore
	2.7.6.4 Function CcmCbRestore
	2.7.6.5 Function CcmCbStoreLoadObject
	2.7.6.6 Function CcmStoreRestoreDefault

	2.7.7 Description of module CcmNmtm and CcmNmtm
	2.7.7.1 Function CcmInitNmtm
	2.7.7.2 Function CcmDefineSlaveTab
	2.7.7.3 Function CcmSendNmtCommand
	2.7.7.4 Function CcmTriggerNodeGuard
	2.7.7.5 Function CcmCbNmtmEvent
	2.7.7.6 Function CcmConfigLgm
	2.7.7.7 Function CcmInitNmtmEx

	2.7.8 Description of module CcmSnPdo
	2.7.8.1 Function CcmSignalCheckVar

	2.7.9 Description of module CcmSync
	2.7.9.1 Function CcmInitSyncConsumer
	2.7.9.2 Function CcmConfigSyncConsumer
	2.7.9.3 Function CcmConfigSyncProducer
	2.7.9.4 Function CcmCbSyncReceived
	2.7.9.5 Function CcmGetSyncCounter

	2.7.10 Description of module CcmSyncEx
	2.7.10.1 Function CcmInitSyncConsumerEx

	2.7.11 Description of module CcmEmcc
	2.7.11.1 Function CcmInitEmcc
	2.7.11.2 Function CcmEmccDefineProducerTab
	2.7.11.3 Function CcmCbEmccEvent

	2.7.12 Description of module CcmEmcp
	2.7.12.1 Function CcmConfigEmcp
	2.7.12.2 Function CcmClearPreDefinedErrorField
	2.7.12.3 Function CcmSendEmergency
	2.7.12.4 Function CcmCbEmcpEvent

	2.7.13 Description of module CcmHbc
	2.7.13.1 Function CcmInitHbc
	2.7.13.2 Function CcmHbcDefineProducerTab
	2.7.13.3 Function CcmCbHbcEvent

	2.7.14 Description of module CcmHbp
	2.7.14.1 Function CcmConfigHbp

	2.7.15 Description of module TgtCav and CavFile
	2.7.15.1 Function TgtCavInit
	2.7.15.2 Function TgtCavShutDown
	2.7.15.3 Function TgtCavCreate
	2.7.15.4 Function TgtCavDelete
	2.7.15.5 Function TgtCavOpen
	2.7.15.6 Function TgtCavClose
	2.7.15.7 Function TgtCavStore
	2.7.15.8 Function TgtCavRestore
	2.7.15.9 Function TgtCavGetAttrib
	2.7.15.10 Function TgtCavCheckValid

	2.7.16 Description of module CcmBoot
	2.7.16.1 Function CcmBootNetwork

	2.7.17 Description of module CcmFloat
	2.7.17.1 Function CcmConvertFloat

	2.7.18 Description of module CcmStPdo
	2.7.18.1 Function CcmDefineStaticPdoTab
	2.7.18.2 Function CcmSignalStaticPdo

	2.7.19 Description of module Ccm303
	2.7.19.1 Function Ccm303InitIndicators
	2.7.19.2 Function Ccm303ProcessIndicators
	2.7.19.3 Function Ccm303SetRunState
	2.7.19.4 Function Ccm303SetErrorState
	2.7.19.5 Macros defined in Ccm303

	2.7.20 Description of module CcmLss
	2.7.20.1 Function CcmLssmSwitchMode
	2.7.20.2 Function CcmLssmConfigureSlave
	2.7.20.3 Function CcmLssmInquireIdentity
	2.7.20.4 Function CcmLssmIdentifySlave
	2.7.20.5 Callback function CcmCbLssmEvent
	2.7.20.6 Callback Function CcmCbLsssEvent

	2.7.21 Communication parameters and process variables

	2.8 Description of the CANopen stack functions
	2.8.1 Description of module SDOS
	2.8.1.1 Data structures of module SDOS
	2.8.1.2 Definition and modification of communication parameters
	2.8.1.3 SDO transfer based on object properties
	2.8.1.4 SDO download (client => server) protocol
	2.8.1.5 SDO upload (client <= server) protocol
	2.8.1.6 SDO block transfer protocol
	1.1.1.1
	2.8.1.7 Application Interface
	2.8.1.8 Function SdosInit
	2.8.1.9 Function SdosAddInstance
	2.8.1.10 Function SdosDeleteInstance
	2.8.1.11 Function SdosNmtEvent
	2.8.1.12 Function SdosDefineServer
	2.8.1.13 Function SdosUndefineServer
	2.8.1.14 Function SdosProcess
	2.8.1.15 Function SdosAbort

	2.8.2 Description of module SDOC
	2.8.2.1 Data structures of module SDOC
	2.8.2.2 Defining and changing communication parameters
	2.8.2.3 SDO segmented download protocol (client=>server)
	2.8.2.4 SDO segmented upload protocol (client<=server)
	2.8.2.5 SDO block transfer protocol
	1.1.1.1
	2.8.2.6 Application Interface
	2.8.2.7 Function SdocInit
	2.8.2.8 Function SdocAddInstance
	2.8.2.9 Function SdocDeleteInstance
	2.8.2.10 Function SdocNmtEvent
	2.8.2.11 Function SdocDefineClient
	2.8.2.12 Function SdocUndefineClient
	2.8.2.13 Function SdocInitTransfer
	2.8.2.14 Callback function for SDO transfer completion
	2.8.2.15 Function SdocGetState
	2.8.2.16 Function SdocProcess
	2.8.2.17 Function SdocAbort
	2.8.2.18 Function SdocIndicateNetwork

	2.8.3 Description of module PDO
	2.8.3.1 Sending PDOs
	2.8.3.2 Send and Receive Notification
	2.8.3.3 Function PdoInit
	2.8.3.4 Function PdoAddInstance
	2.8.3.5 Function PdoDeleteInstance
	2.8.3.6 Function PdoNmtEvent
	2.8.3.7 Function PdoDefineCallback
	2.8.3.8 Function PdoSend
	2.8.3.9 Function PdoSignalDynPdo
	2.8.3.10 Function PdoSignalVar
	2.8.3.11 Function PdoProcessCheckVar
	2.8.3.12 Function PdoProcessAsync
	2.8.3.13 Function PdoProcessSync
	2.8.3.14 Function PdoSendSync
	2.8.3.15 Function PdoSetSyncCallback
	2.8.3.16 Function PdoForceAsynPdo

	2.8.4 Description of module PDOSTC
	2.8.4.1 Function PdoStaticDefineVarField
	2.8.4.2 Function PdoSignalStaticPdo

	2.8.5 Description of module OBD
	1.1.1.1
	2.8.5.1 Function ObdGetEntry
	2.8.5.2 Function ObdWriteEntry
	2.8.5.3 Function ObdReadEntry
	2.8.5.4 Function ObdAccessOdPart
	2.8.5.5 Function ObdDefineVar
	2.8.5.6 Function ObdGetNodeState
	2.8.5.7 Function ObdGetNodeId
	2.8.5.8 Function ObdRegisterUserOd
	2.8.5.9 Callback Function for access to an Object

	2.8.6 Description of module COB
	2.8.6.1 Function CobDefine
	2.8.6.2 Function CobUndefine
	2.8.6.3 Function CobCheck
	2.8.6.4 Function CobSend
	2.8.6.5 Function CobProcessRecvQueue

	2.8.7 Description of module NMT
	2.8.7.1 Function NmtExecCommand

	2.8.8 Description of module NMTS
	2.8.8.1 Function NmtsSendBootup
	2.8.8.2 Function NmtsProcess
	2.8.8.3 Function NmtsSetLgCallback
	2.8.8.4 Callback Function to reject NMT commands

	2.8.9 Description of module NMTM
	2.8.9.1 Function NmtmAddSlaveNode
	2.8.9.2 Function NmtmDeleteSlaveNode
	2.8.9.3 Function NmtmConfigLgm
	2.8.9.4 Function NmtmTriggerNodeGuard
	2.8.9.5 Function NmtmGetSlaveInfo
	2.8.9.6 Function NmtmSendCommand
	2.8.9.7 Function NmtmProcess

	2.8.10 Description of module EMCC
	2.8.10.1 Function EmccInit
	2.8.10.2 Function EmccAddInstance
	2.8.10.3 Function EmccDeleteInstance
	2.8.10.4 Function EmccNmtEvent
	2.8.10.5 Function EmccSetEventCallback
	2.8.10.6 Function EmccAddProducerNode
	2.8.10.7 Function EmccDeleteProducerNode

	2.8.11 EMCP module
	2.8.11.1 Function EmcpInit
	2.8.11.2 Function EmcpAddInstance
	2.8.11.3 Function EmccDeleteInstance
	2.8.11.4 Function EmcpNmtEvent
	2.8.11.5 Function EmcpSendEmergency

	2.8.12 Description of module HBC
	2.8.12.1 Function HbcInit
	2.8.12.2 Function HbcAddInstance
	2.8.12.3 Function HbcDeleteInstance
	2.8.12.4 Function HbcNmtEvent
	2.8.12.5 Function HbcSetEventCallback

	2.8.13 Description of module HBP
	2.8.13.1 Function HbpInit
	2.8.13.2 Function HbpAddInstance
	2.8.13.3 Function HbpDeleteInstance
	2.8.13.4 Function HbpNmtEvent
	2.8.13.5 Function HbpProcess

	2.9 Add-on modules for the CANopen protocol stack
	2.9.1 Description of module MPDO
	2.9.1.1 Function PdoSendMPDO

	2.9.2 Description of module CcmMPdo
	2.9.2.1 Function CcmPdoSendMPDO

	2.10 Meaning of return values and abort codes
	2.10.1 CANopen return codes
	2.10.2 SDO abort codes
	2.10.3 Emergency error codes

	2.11 Configuration and Scaling
	2.11.1 Configuration of the CANopen stack
	2.11.1.1 Common CANopen stack settings
	2.11.1.2 Configuration for the CCM module
	2.11.1.3 Configuration for the CAN driver
	2.11.1.4 Configuration for the COB module
	2.11.1.5 Configuration for the OBD module
	2.11.1.6 Execution Properties of the Modul-Process Functions
	2.11.1.7 Configurations for the NMT slave module
	2.11.1.8 Configurations for the emergency producer module
	2.11.1.9 Configurations for the PDO module
	2.11.1.10 Configurations for the SDO server/client module
	2.11.1.11 Configurations for the LSS master module
	2.11.1.12 Configurations for the Heartbeat Consumer Module

	2.11.2 Configuration of the Object Dictionary

	2.12 Characteristics of Hardware, OS and IDEs
	2.12.1 Selecting the address space for data storage
	2.12.2 Operating System PxROS
	2.12.2.1 Call Sequence of the CCM Functions with PxROS

	2.12.3 Linux Operating System
	2.12.3.1 Call Sequence of the CCM Functions with Linux
	2.12.3.2 Function CcmLockCanopenThreads
	2.12.3.3 Function CcmUnlockCanopenThreads
	2.12.3.4 Function CcmLockedCopyData
	2.12.3.5 Function CcmSendThreadEvent

	2.12.4 Windows Operating System
	2.12.4.1 Synchronizing between Threads
	2.12.4.2 Initializing CANopen for Windows
	2.12.4.3 Using the Example Application
	2.12.4.4 Function CcmSendThreadEvent
	2.12.4.5 Function CcmEnterCriticalSectionPdoProcess
	2.12.4.6 Function CcmLeaveCriticalSectionPdoProcess

	3 Hints for Porting to Other Target Platforms
	3.1 Global definition file GLOBAL.H
	3.2 Selecting the CAN driver
	3.3 CAN bit rate definition
	3.4 Target specific settings
	3.4.1 Hardware properties definition
	3.4.2 Memory management definition - standard functions
	3.4.3 Definition of target specific functions

	3.5 CPU variable byte order definition
	3.6 Typical configuration of a CANopen slave
	3.7 Typical configuration of a CANopen master

	4 Notes on CANopen certification
	5 Index
	6 Glossary
	7 References

